
Abstract flows over time: A first step towards
solving dynamic packing problems?

Jan-Philipp W. Kappmeier, Jannik Matuschke, and Britta Peis

TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
{kappmeier,matuschke,peis}@math.tu-berlin.de

Preprint 001-2012 (revised version)
November 12, 2012

Abstract. Flows over time [4] generalize classical network flows by in-
troducing a notion of time. Each arc is equipped with a transit time that
specifies how long flow takes to traverse it, while flow rates may vary
over time within the given edge capacities. In this paper, we extend this
concept of a dynamic optimization problem to the more general setting
of abstract flows [8]. In this model, the underlying network is replaced by
an abstract system of linearly ordered sets, called “paths” satisfying a
simple switching property: Whenever two paths P and Q intersect, there
must be another path that is contained in the beginning of P and the
end of Q.
We show that a maximum abstract flow over time can be obtained by
solving a weighted abstract flow problem and constructing a temporally
repeated flow from its solution. In the course of the proof, we also show
that the relatively modest switching property of abstract networks al-
ready captures many essential properties of classical networks.

1 Introduction

Time plays a crucial role in many applications of combinatorial optimization,
e.g., in the context of transportation, communication, or productional planning.
Therefore, extending classical problem formulations by a temporal dimension is
of particular interest. So far the most prominent example in this direction is the
concept of flows over time – also called “dynamic flows” in the literature – which
was first introduced and investigated by Ford and Fulkerson [4]. A key challenge
in the context of flows over time is that an explicit specification of all flow
values at each time step leads to an output that is exponential in the input size.
Ford and Fulkerson resolved this issue by showing that the maximum flow over
time problem allows for a so-called temporally repeated solution, which can be
obtained by solving a single static flow problem. Since then, numerous results on

? This work was supported by Deutsche Forschungsgemeinschaft (DFG) as part of
the Priority Program “Algorithm Engineering” (1307), by DFG Research Center
Matheon “Mathematics for key technologies” in Berlin, and the Berlin Mathemat-
ical School. An extended abstract of this article will be published in Algorithms and
Computation: 23rd International Symposium, ISAAC 2012.

different variants of flow over time problems have emerged. Outstanding results
include [2,10,11], see [15] for a general survey.

Network flows can be interpreted as a special case of packing problems: we try
to pack the capacitated edges of the graph by assigning flow values to the source-
sink-paths. Given the impact of Ford and Fulkerson’s result, which spawned a
whole theory of flows over time, one now might ask how the concept of time
can be extended to other packing problems. A first natural candidate are gen-
eralizations of static network flows, as, e.g., abstract flows. The notion of ab-
stract flows goes back to Hoffman [8], who observed that Ford and Fulkerson’s
original proof of the max flow/min cut theorem [3] does not use the underly-
ing network structure directly but only exploits one particular property of the
path system, the so-called switching property. Hoffman succeeded in showing
that packing problems defined on general set systems (called abstract networks)
with this switching property are totally dual integral (TDI). These structural
results were later complemented by the combinatorial primal-dual algorithms of
Martens and McCormick [13,12]. Inspired by Hoffman’s work, further abstrac-
tions based on uncrossing axioms have been proposed and corresponding TDI
results established, e.g., lattice polyhedra [9] or switchdec polyhedra [5], see [14]
for a survey. In light of these generalizations, abstract flows appear to serve as
an ideal first stepstone in our endeavour towards dynamic formulations of more
general packing integer programs.

Our contribution In this paper, we introduce and investigate abstract flows
over time and show how a temporally repeated abstract flow and a corresponding
minimum cut can be computed by solving a single static weighted abstract flow
problem. This immediately leads to the max flow/min cut theorem for abstract
flows over time as our main result. Although our construction resembles that
of Ford and Fulkerson’s original result [4] on (non-abstract) flows over time,
the proof turns out to be considerably more involved and we will need to take
a detour via a relaxed version of abstract flows over time that also considers
storage of flow at intermediate elements. However, our results also imply that
this relaxation is not proper and there always is an optimal solution that does
not wait at intermediate nodes. In the course of our proof, we also establish
some interesting structural properties of abstract networks, showing that the
relatively modest switching property of abstract path systems already captures
many essential properties of classical networks.

Structure of this paper In the remainder of this section, we introduce Hoff-
man’s model of abstract flows in detail. In Section 2, we show how to conduct
a time expansion on this model and point out differences to the time expanded
network for classical network flows by Ford and Fulkerson [4]. In Section 3, we
will show how to construct the temporally repeated abstract flow and a corre-
sponding minimum abstract cut of same value. In order to validate feasibility
of this cut, we will prove the necessary properties on the structure of abstract
networks in Section 4. Using these results, we can finally show in Section 5 that
the cut actually intersects all temporal paths, completing the proof of our main
theorem.

2

Introduction to abstract flows

An abstract path system consists of a ground set E of elements and a family
of paths P ⊆ 2E . For every P ∈ P there is an order <P of the elements in P .
A path system is an abstract network, if the switching property is fulfilled: For
every P,Q ∈ P and every e ∈ P ∩Q, there is a path

P ×e Q ⊆ {p ∈ P : p ≤P e} ∪ {q ∈ Q : q ≥Q e}.

Given an abstract network with capacities c ∈ RE+ for all elements, the max-
imum abstract flow problem asks for an assignment of flow values x ∈ RP+ to the
paths such as to maximize the total flow value while not violating the capacity
of any element. The problem can be generalized further by introducing a weight
function r ∈ RP+ that specifies the “reward” per unit of flow sent along each
path. It is easy to see that allowing general weight functions renders the prob-
lem NP -hard. Thus, the choice of weight functions is restricted to supermodular
functions, i.e., we require

r(P ×e Q) + r(Q×e P) ≥ r(P) + r(Q)

for every P,Q ∈ P and e ∈ P ∩Q.
The dual of the maximum weighted abstract flow problem is the minimum

weighted abstract cut problem, which assigns a value y(e) to every element e ∈ E
so as to cover every path according to its weight. The two problems can be stated
as follows.

max
∑
P∈P

r(P)x(P)

s.t.
∑

P∈P:e∈P
x(P) ≤ c(e) ∀e ∈ E

x(P) ≥ 0 ∀P ∈ P

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ r(P) ∀P ∈ P

y(e) ≥ 0 ∀e ∈ E

Hoffman [8] showed that for every integral supermodular weight function,
the abstract cut LP is totally dual integral. This implies a generalized version
of Ford and Fulkerson’s max flow/min cut result in two ways: On the one hand,
the switching property represents a significant abstraction, allowing for more
general structures. On the other hand, supermodular weight functions lead to
weighted cuts, i.e., elements can appear multiple times in the cut. We will later
see a useful example of such weights in the context of temporally repeated flows,
which also yields an intuitive interpretation of these cut values.

Hoffman’s structural result was extended by McCormick [13], who presented
a combinatorial algorithm that solves the unweighted version (r ≡ 1) of the max-
imum abstract flow problem in time polynomial in |E|, if the abstract network
is given by a separation oracle for the abstract cut LP (in the unweighted case,
this is equivalent to deciding whether a given set of elements contains a path or
not). Later, Martens and McCormick [12] extended this result and presented an
algorithm that also solves the weighted case.

3

While these results indicate that the switching property is the essential force
behind max flow/min cut and similar total dual integrality results for flow based
problems, we want to close this section by pointing out an example that shows
how abstract networks actually may differ from classical networks. In classical
networks, if two paths P and Q both intersect a third path R, then there either
is a path from the beginning of P to the end of Q or the other way around. The
following example shows that this is not true in abstract networks, even in cases
where the switching property preserves the order of intersecting abstract paths.

Example. Consider the abstract network (E,P) with E = {1, 2, 3, 4, a, b, c, d}
and P = {(1, 2, 3, 4), (a, 2, c), (b, 3, d), (1, c), (1, d), (a, 4), (b, 4)}. Although both
(a, 2, c) and (b, 3, d) intersect the path (1, 2, 3, 4), there is neither a path that
starts with a and ends with d nor one that starts with b and ends with c.

2 Time expansion of abstract networks

Time plays an important role in many application areas of network flows. Flow
rates can vary over time, and flow also takes time to travel within the network.
One concept to capture these temporal effects is the so-called time expanded
network introduced by Ford and Fulkerson [4]. The basic idea is to introduce
multiple copies of the nodes in the network, one for each point in time. Then
arcs connect copies of vertices according to their travel time. We extend this
concept to the world of abstract flows by introducing the time expansion of an
abstract network. In the spirit of Ford and Fulkerson’s idea, we will introduce
multiple copies of the abstract network. In contrast to the classical case however,
not copies of individual arcs but of whole paths will be introduced.

The time expansion of an abstract network consists of a (static) abstract
network with capacities c ∈ RE+, transit times τ ∈ ZE+ and a time horizon
T ∈ Z+. The time from 0 to T is discretized into T intervals [0, 1), . . . , [T −1, T)
which we identify with the set of their starting times T := {0, . . . , T − 1}. For
each interval, a copy of the ground set E is introduced, i.e., the time expanded
ground set is ET := E × T .

A temporal path is denoted by Pt, where P is a path of the underlying static
abstract network and t ∈ T specifies the starting time of the path. Flow sent
along the temporal path Pt enters element e at time t+

∑
p∈(P,e) τ(e), which is

the time it needs for traversing all preceeding elements plus the initial offset of
the path. Accordingly, we identify Pt with the set of its temporal elemtents by
defining

Pt :=
{

(e, θ) ∈ ET : e ∈ P, θ = t+
∑
p∈(P,e) τ(p)

}
.

The arrival time of the temporal path Pt is t +
∑
e∈P τ(e), i.e., the time at

which the flow arrives the end of the path. Since all flow is supposed to arrive
its destination within the time horizon, we only allow copies of paths with a
maximum arrival time of T − 1, which is the final element of T . Thus, the set
of temporal paths is defined by

PT :=
{
Pt : P ∈ P, t ∈ T , t+

∑
p∈P τ(p) < T

}
.

4

We now can define the maximum abstract flow over time problem in analogy
to the (static) maximum abstract flow problem. An abstract flow over time is
an assignment x : PT → R+ of non-negative flow values to all temporal paths.
It is feasible if and only if the capacity of every element at every point in time is
respected. The maximum abstract flow over time problem asks for an abstract
flow over time that maximizes the total value of the flow:

max
∑
Pt∈PT

x(Pt)

s.t.
∑

Pt∈PT : (e,θ)∈Pt

x(Pt) ≤ c(e) ∀e ∈ E, θ ∈ T

x(Pt) ≥ 0 ∀Pt ∈ PT .

In analogy to the static case, the maximum value of an abstract flow over
time can be bounded by an abstract cut over time, i.e., a subset C ⊆ ET of the
time expanded ground set such that for each Pt ∈ PT the set Pt∩C is nonempty.

Lemma 1. Let x be an abstract flow over time and let C be an abstract cut over
time. Then

∑
Pt∈PT

x(Pt) ≤
∑

(e,θ)∈C c(e).

Proof. As the cut contains an element of every temporal path and the capacity
constraints are respected at every point in time, we get∑

Pt∈PT

x(Pt) ≤
∑

(e,θ)∈C

∑
Pt:(e,θ)∈Pt

x(Pt) ≤
∑
e∈C

c(e). ut

Remark. (Time expansion of an abstract network vs. time expanded network)
While the time expansion of abstract networks as defined above is similar to the
notion of a time expanded network as defined by Ford and Fulkerson [4] for clas-
sical network flows, the two definitions are not quite identical. Time expanded
networks are based on the arc formulation of network flows. They are constructed
by introducing copies of both the nodes and arcs of the underlying static net-
work and adjusting the end points of the arcs according to their transit times.
By construction, the resulting structure is guaranteed to be a network again.
Unfortunately, there is no correspondence to the arc formulation for abstract
flows – their definition is inherently tied to the path system, which does not
allow for local concepts such as flow conservation at a particular element. Our
model of time expansion therefore introduces copies of each path as a whole. In
contrast to time expanded networks, the time expansion of an abstract network
is not an abstract network in general, as can be seen in the following example.

Example. Let E = {s, a, b, t} and P = {P,Q,R, S} with P = (s, a, b, t), Q =
(s, b, a, t), R = (s, a, t), and S = (a, b, t). It is easy to verify that P in fact fulfills
the switching property. Now assume all elements have unit transit times, i.e.,
τ ≡ 1. The temporal paths P0 and Q1 intersect in the element (b, 2). However,
there is no temporal path in PT that can be constructed from the elements
{(s, 1), (b, 2), (t, 4)}, as there is a “time gap” between (b, 2) and (t, 4). Thus, the
time expansion violates the switching property.

5

In view of this example, it is not even clear whether max flow/min cut results are
still valid in the context of abstract flows over time or how far existing algorithms
for abstract flow problems can be applied to the time expansion of the abstract
network. Fortunately, the proof of our main result in the following sections will
dissipate these concerns.

Theorem 2 (Abstract max flow/min cut over time). The value of a max-
imum abstract flow over time equals the capacity of a minimum abstract cut over
time. Both a maximum flow and a minimum cut over time can be computed by
solving a single (static) maximum weighted abstract flow problem.

Our proof of Theorem 2 involves constructing an abstract cut over time. In
order to show feasibility of this cut, we will have to introduce the possibility
of waiting at intermediate elements as an important device in our proof (see
Section 4). Storage of flow at intermediate nodes plays an interesting role in
the field of flows over time: While in some settings, such as the maximum flow
over time problem or the NP-hard minimum cost flow over time problem, there
always exist optimal solutions that do not wait at intermediate nodes [4,1], this is
not true in other settings: e.g., for multi-commodity flows over time, the decision
of allowing flow storage at intermediate nodes has an influence on the value of
the solution and also on the complexity [7,6]. In the context of abstract flows
over time, our results imply that the possibility of waiting has no influence on
the problem, as we prove in Section 5 that the temporally repeated solution
constructed in Section 3 is optimal even if waiting is allowed.

Theorem 3. If waiting at intermediate elements is allowed, there still is a max-
imum abstract flow over time that does not wait at intermediate elements.

3 Constructing a maximum abstract flow over time

The number of paths created by applying the time expansion is linear in T
and thus exponential in the size of the input. Hence, even encoding a solution
in the straight-forward way results in an exponentially sized output. Ford and
Fulkerson [4] resolved this problem for the classical (non-abstract) flow over time
problem by introducing so-called temporally repeated flows, i.e., a flow over time
constructed by temporally repeating a static flow pattern.

A temporally repeated abstract flow is an abstract flow over time x that is
constructed from a static abstract flow x̃ by setting x(Pt) := x̃(P) for P ∈
P and 0 ≤ t < T −

∑
e∈P τ(e) and 0 otherwise. In other words, the static flow

on each path is repeatedly sent as long as possible before the time horizon is
reached. It is easy to check that feasibility of the underlying static flow implies
feasibility of the temporally repeated flow.

Lemma 4. A temporally repeated abstract flow derived from a feasible abstract
flow is a feasible abstract flow over time.

6

Proof. Let x̃ be a feasible abstract flow and let x be the corresponding temporally
repeated flow. We only need to verify that x obeys the capacity restrictions for
every e ∈ E and every θ ∈ T . In fact, observe that (e, θ) ∈ Pt if and only if
e ∈ P and θ = t +

∑
p∈P τ(p). As the second part of this sum is constant for a

fixed P ∈ P, there is only one specific value of t for which (e, θ) ∈ Pt. Thus∑
Pt∈PT : (e,θ)∈Pt

x(Pt) ≤
∑
P∈P

x̃(P) ≤ c(e)

for all (e, θ) ∈ ET . ut

In order to construct a maximum temporally repeated abstract flow, we first
observe that flow can be sent along path P ∈ P up to time r(P) := T −∑
e∈P τ(e), i.e., the flow value x̃(P) is repeated r(P) times. Thus, the total

flow value of the temporally repeated flow x resulting from the static flow x̃
is
∑
P∈P r(P)x̃(P) and a maximum temporally repeated flow corresponds to a

static abstract flow that is maximum with respect to the weights r(P). It is not
hard to see that the weight function defined in this way is supermodular.

Observation 5. The weight function r(P) := T −
∑
e∈P τ(e) is supermodular.

Proof. By definition of r we have

r(P ×e Q) + r(Q×e P) = T −
∑

e∈P×eQ

τ(e) + T −
∑

e∈Q×eP

τ(e)

≥ 2T −

∑
e∈[P,e]

τ(e) +
∑
e∈(e,Q]

τ(e)

−
∑
e∈[Q,e]

τ(e) +
∑
e∈(e,P]

τ(e)

= 2T −

∑
e∈P

τ(e)−
∑
e∈Q

τ(e)

= r(P) + r(Q). ut

Thus, we can solve the weighted abstract flow problem defined by these
weights using the algorithm from [12], yielding a (static) abstract flow x̃∗ of
maximum weight and the corresponding temporally repeated flow x∗. We will
show that the value of x∗ is not only maximum among the temporally repeated
abstract flows but also among all abstract flows over time. To this end, we now
construct an abstract cut over time whose capacity matches the flow value of
x∗. Let ỹ be an optimal solution to the dual of the static weighted abstract flow
problem with the weights r(P) used to construct the temporally repeated flow.
Note that by [8], we can assume ỹ to be integral. We will interpret the values
ỹ(e) as the number of time steps for which element e is contained in the cut. We
define the time at which e ∈ E enters the cut by setting

α(e) := minP∈P
∑
p∈(P,e)(τ(p) + ỹ(p))

and define
C := {(e, θ) ∈ ET : α(e) ≤ θ < α(e) + ỹ(e)} .

7

Theorem 6. C is a feasible abstract cut over time.

The proof of Theorem 6 involves some additional results on the structure of
abstract networks, which we will elaborate on in the following sections. Using
LP duality, Theorem 6 immediately leads to the following corollary, which implies
Theorem 2.

Corollary 7. The temporally repeated abstract flow x∗ is a maximum abstract
flow over time, and C is a minimum abstract cut over time whose capacity is
equal to the flow value.

Proof. We observe that by duality,∑
(e,θ)∈C

c(e) =
∑
e∈E

c(e)ỹ(e) =
∑
P∈P

r(P)x̃∗(P) =
∑
Pt∈PT

x∗(Pt)

and thus the capacity of C equals the flow value of x∗. ut

4 Waiting at intermediate elements and the structure of
abstract networks

In order to prove that the set C constructed in the preceeding section actually
covers all temporal paths, we need to show that we can ensure w.l.o.g. that the
switching operation ×· preserves the order of the intersecting paths. We start by
showing a weaker version of this statement, asserting that we can always choose
the path resulting from an application of ×· in such a way that the two subpaths
used for its construction are not mixed.

Lemma 8. Let P,Q ∈ P, e ∈ P ∩Q, then there is a path R ⊆ [P, e]∪ [e,Q] such
that a ∈ R ∩ [P, e] and b ∈ R \ [P, e] implies a <R b.

Proof. Let P,Q ∈ P and e ∈ P ∩Q. Let R to be a path contained in [P, e]∪ [e,Q]
such that |R \ [P, e]| is minimal. By contradiction assume there is a ∈ R ∩ [P, e]
and b ∈ R\ [P, e] with b <R a. Let R′ := P ×aR. Observe that R′ ⊂ [P, e]∪ [e,Q]
and R′ \ [P, e] ⊂ R \ [P, e] as a /∈ R′, contradicting the choice of R. ut

As a result of Lemma 8, the following assumption is without loss of generality.

Assumption A. If a ∈ P ×eQ∩ [P, e] and b ∈ P ×eQ \ [P, e], then a <P×eQ b.

In order to show that ×· actually preserves the internal order of P and Q,
we will – temporally – extend our model of time expansion by allowing flow to
deliberately delay its traversal at intermediate elements.

8

Waiting at intermediate elements A temporal path with intermediate wait-
ing is denoted by Pσ, where P ∈ P is a path of the underlying static ab-
stract network and σ : P → T specifies the waiting time σ(e) before travers-
ing element e ∈ P . Flow sent along Pσ enters element e at time γ(Pσ, e) :=∑
p∈(P,e)(σ(p) + τ(p)) + σ(e) which is the time it needs for traversing all pre-

ceeding elements and the time it spends waiting at those elements and at e itself.
Accordingly, we identify Pσ with the set of its temporal elemtents by defining

Pσ := {(e, θ) ∈ ET : e ∈ P, θ = γ(Pσ, e)} .

The set of all temporal paths with intermediate waiting is denoted by

P∗T :=
{
Pσ : P ∈ P, σ ∈ T P ,

∑
e∈P (σ(e) + τ(e)) < T

}
.

We will identify Pt ∈ PT with P(t,0,...,0) ∈ P∗T . Note that the maximum
abstract flow over time problem with waiting at intermediate elements is a re-
laxation of the maximum abstract flow over time without waiting, and the tem-
porally repeated abstract flow x∗ defined in Section 3 is a feasible solution to
this relaxation. We will show that C actually covers all paths in P∗T , and thus
x∗ is optimal even if waiting is allowed. This implies that the relaxation is not
proper, i.e., the possibility of waiting does not have any effect on the value of
the optimal solution.

However, the extension of the model allows us to delete certain paths from
the network. Observe that if Q is a strict subset of P , and <Q is identical
to the restriction of <P to Q, then there always is an optimal abstract flow
over time that does not use any copy of P (since it can wait at intermediate
elements and use Q instead). Thus we can safely erase P from the base network
in this case (without violating the switching axiom as Q can always replace P
as switching choice). Hence, if we allow waiting at intermediate elements, the
following assumption is without loss of generality.

Assumption B. If Q ⊂ P then there are a, b ∈ Q with a <P b and b <Q a.

In the remainder of this section, we will show that Assumption B implies the
following lemma. As a corollary, we can assume w.l.o.g. the switching operation
to preserve order.

Lemma 9. There are no paths P,Q ∈ P such that Q ⊂ P .

Corollary 10. Let R := P ×e Q. If a, b ∈ R ∩ [P, e] and a <P b then a <R b. If
a, b ∈ R \ [P, e] and a <Q b then a <R b.

Proof.

– By contradiction assume a, b ∈ [P, e] ∩ R and a <P b but b <R a. Then, by
Assumption A, there is no c ∈ R \ (P, e) with c <R a. Thus [R, a] ⊆ P and
R×b P ⊂ P , contradicting Lemma 9.

– By contradiction assume a, b ∈ R \ [P, e] and a <Q b but b <R a. Then, by
Assumption A, there is no c ∈ R ∩ [P, e] with c >R b. Thus [a,R] ⊆ Q and
Q×a R ⊂ Q, contradicting Lemma 9. ut

9

Proof of Lemma 9. By contradiction assume there are P,Q ∈ P with Q ⊂ P .
Let P ∗ be such that |P ∗| is minimal among all possible choices of such a P .

For Q ⊂ P ∗ define b(Q) ∈ Q to be the maximal element w.r.t. <Q such
that p <P∗ b(Q) for all p ∈ (Q, b(Q)), i.e., until element b(Q) the order of Q is
identical to that of P . By Assumption B, b(Q) cannot be the last element of Q.
So let a(Q) ∈ Q be the successor of b(Q) in Q. Note that this implies a <P∗ b by
definition of b(Q). Among all paths Q ⊂ P ∗, choose Q∗ such that b∗ := b(Q∗) is
maximal w.r.t. <P∗ . Let a∗ := a(Q∗).

Let R := Q∗ ×b∗ P ∗. Note that a∗ /∈ R, as a∗ >Q∗ b
∗, and therefore R ⊂ P ∗.

We now claim that <R is identical to <Q∗ on the (Q∗, b∗)-part of R.

Claim. For all c, d ∈ R ∩ (Q∗, b∗) with c <Q∗ d, we have c <R d.

Proof. If c <Q∗ d but d <R c, let R′ := R ×d Q∗. Note that c /∈ R′ and by
Assumption A, we have chosen R such that [R, d] ⊂ Q∗. Thus R′ ⊂ Q∗ ⊂ P ∗

which contradicts the choice of P ∗. ut

By definition of b(Q∗), the order <Q∗ is identical to <P∗ on (Q∗, b∗) and thus
<R is identical to <P∗ on the (Q∗, b∗)-part of R. This implies that a(R), b(R)
cannot be both in the (Q∗, b∗)-part of R. Thus, a(R) ∈ [b∗, P ∗], which by
a(R) <P∗ b(R) implies that b(R) ∈ (b∗, P ∗). However this means b(R) >P∗ b

∗

contradicting our choice of Q∗ maximizing b∗. ut

5 Proof of Theorem 6

We will show that C not only covers all paths in PT but even those paths that
use waiting at intermediate elements, implying optimality of the constructed
temporally repeated abstract flow for the relaxation of the problem. We are thus
allowed to use the results from Section 4 in the proof, which is only sketched
here (a complete proof can be found in the appendix).

Theorem 6a. C ∩ Pσ 6= ∅ for every Pσ ∈ P∗T .

Proof. By contradiction assume there is a path that is not covered by C. Among
all uncovered paths choose Pσ ∈ P∗T such that

∑
e∈P (τ(e) + ỹ(e)) is minimal.

We will show that there is an uncovered path R whose length is strictly shorter,
yielding a contradiction.

Let ē ∈ P be maximal w.r.t. <P among all element on P with γ(Pσ, ē) ≥
α(ē). Note that such an element exists because the first element e0 of P fulfills
γ(Pσ, e0) = σ(e0) ≥ 0 = α(e0). By construction, Pσ arrives at ē after the element
has entered the cut. Note that, as Pσ is not covered by the cut, the path must
actually arrive at ē after it has left the cut again, i.e., γ(Pσ, ē) ≥ α(ē) + ỹ(ē).
Adding τ(ē) to both sides of the inequality yields∑

e∈[P,ē]

(σ(e) + τ(e)) ≥ α(ē) + ỹ(ē) + τ(ē). (1)

10

We will now argue that ē cannot be the final element of P . Assume by contra-
diction this was the case. Then let L be a path with α(ē) =

∑
e∈(L,ē)(τ(e)+ỹ(e)).

As L×ē P ⊆ [L, ē], feasibility of ỹ implies α(ē) + τ(ē) + ỹ(ē) =
∑
e∈[L,ē](τ(e) +

ỹ(e)) ≥ T . Combining this with (1) yields
∑
e∈P (σ(e) + τ(e)) ≥ T , a contradic-

tion to Pσ ∈ PT .
Thus, ē is not the final element of P and so we let e′ be the successor of ē on

P . Observe that by choice of ē and definition of α

γ(Pσ, e
′) < α(e′) ≤

∑
e∈[P,ē]

(τ(e) + ỹ(e)).

Note that the left hand side of (1) is at most γ(Pσ, e
′) and thus combining

both inequalities yields

α(ē) <
∑

e∈(P,ē)

(τ(e) + ỹ(e)). (2)

Now let Q ∈ P be a path with
∑
e∈(Q,ē)(τ(e) + ỹ(e)) = α(ē). We consider

the path R := Q×ē P . Observe that∑
e∈R

(τ(e) + ỹ(e)) ≤ α(ē) +
∑

e∈(ē,P)

(τ(e) + ỹ(e)) <
∑
e∈P

(τ(e) + ỹ(e)).

Let s :=
∑
e∈[Q,ē] ỹ(e)+

∑
e∈[Q,ē]\R τ(e) and σ′ := (s, 0, . . . , 0) ∈ T R. We will

show that the time expanded path Rσ′ is not covered by C, which contradicts
the choice of P as uncovered path minimizing the length w.r.t. τ + ỹ.

Let f ∈ R. We show (f, γ(R, f)) /∈ C. Note that γ(R, f) = s+
∑
e∈(R,f) τ(e),

and further that by our results from Section 4 we can know that R consists of
two parts: The first part containing elements form [Q, ē] in the same order as
<Q, the second part containing elements form (ē, P), in the same order as <P .

– If f ∈ [Q, ē],

γ(R, f) ≥
∑

e∈(Q,f)

(τ(e) + ỹ(e)) + ỹ(f) ≥ α(f) + ỹ(f).

So Rσ′ reaches f after it has left the cut in this case.
– If f ∈ R \ [Q, ē],

γ(R, f) =
∑

e∈[Q,ē]

(τ(e) + ỹ(e)) +
∑

e∈(ē,R)∩(R,f)

τ(e) ≤ α(ē) + τ(ē) + ỹ(ē) +
∑

e∈(ē,P)∩(P,f)

τ(e)

≤ γ(P, ē) +
∑

e∈[ē,P]∩(P,f)

(τ(e) + σ(e)) ≤
∑

e∈(P,f)

(τ(e) + σ(e)) + σ(f).

The last term is strictly less than α(f) due to the choice of ē and the fact
that f >P ē. So Rσ′ reaches f before it enters the cut in this case.

This concludes the proof. ut

11

6 Conclusion

We presented abstract flows over time, an extension of flows over time that can
be viewed as a first approach towards more general dynamic packing IPs. Our
main result shows that the max flow/min cut result of Ford and Fulkerson still
is valid in Hoffman’s setting of abstract flows, emphasizing the robustness of the
concept. At their heart, our proofs relied exclusively on the switching axiom for
abstract networks, showing how this abstraction actually captures the essence
of total dual integrality in network-based packing problems.

References

1. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate
storage. In: Proceedings of the fourteenth annual ACM-SIAM symposium on Dis-
crete algorithms. pp. 66–75 (2003)

2. Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algo-
rithms. Operations Research Letters 23(3-5), 71–80 (1998)

3. Ford, L., Fulkerson, D.: Maximal flow through a network (1954)
4. Ford, L., Fulkerson, D.: Flows in networks. Princeton University Press (1962)
5. Gaillard, A.: Switchdec polyhedra. Discrete applied mathematics 76(1), 141–163

(1997)
6. Groß, M., Skutella, M.: Maximum multicommodity flows over time without inter-

mediate storage. In: Algorithms - ESA 2012. pp. 539–550 (2012)
7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient al-

gorithms and complexity. Theoretical Computer Science 379(3), 387–404 (2007)
8. Hoffman, A.: A generalization of max flow-min cut. Mathematical Programming

6(1), 352–359 (1974)
9. Hoffman, A., Schwartz, D.: On lattice polyhedra. In: Proceedings 5th Hungarian

Coll. on Combinatorics, North Holland. pp. 593–598 (1978)
10. Hoppe, B., Tardos, E.: The quickest transshipment problem. Mathematics of Op-

erations Research 25(1), 36–62 (2000)
11. Klinz, B., Woeginger, G.: Minimum-cost dynamic flows: The series-parallel case.

Networks 43(3), 153–162 (2004)
12. Martens, M., McCormick, S.T.: A polynomial algorithm for weighted abstract flow.

Integer Programming and Combinatorial Optimization pp. 97–111 (2008)
13. McCormick, S.T.: A polynomial algorithm for abstract maximum flow. In: Pro-

ceedings of the seventh annual ACM-SIAM symposium on Discrete algorithms.
pp. 490–497. Society for Industrial and Applied Mathematics (1996)

14. Schrijver, A.: Total dual integrality from directed graphs, crossing families and sub-
and supermodular functions. Progress in combinatorial optimization pp. 315–361
(1984)

15. Skutella, M.: An introduction to network flows over time. In: Cook, W.J., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer (2009)

12

	Abstract flows over time: A first step towards solving dynamic packing problems

