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Abstract

We study a concept in multicriteria optimization called compromise solutions (introduced
in 1973 by Yu [20]) and a generalized version of this, termed reference point solutions. Our
main result shows the power of this concept: Approximating reference point solutions is
polynomially equivalent to constructing an approximate Pareto set as in [16].

A reference point solution is the solution closest to a given reference point in the objective
space. Compromise solutions use the component-wise minimum over all solutions as a
reference point. These methods are widely spread in practice. While for a fixed norm it
gives a single solution balancing the different criteria, by changing the norm in the objective
space each point in the Pareto set can become the reference point solution, thus maintaining
the full variability of multicriteria problems. Despite its apparent virtues only few theoretical
and even less algorithmic results are known for reference point methods.

We study minimization problems with a constant number of criteria. In addition to the
equivalence of approximability of reference point solutions and the Pareto set, our techniques
allow us to show that the Pareto set has a constant factor approximation if and only if the
single-criterion problem has a constant factor approximation. We further give several general
techniques to obtain solutions for reference point methods. The main algorithmic result is
an LP-rounding technique that achieves the same approximation factors for reference point
solutions as in the single-criterion case for many classical combinatorial problems, including
set-cover and several machine scheduling problems. By the established link our algorithmic
results also give a short alternative proof for the existence of an FPTAS of the Pareto set
in the case of linear optimization over convex sets [16].

1 Introduction

In many applications of combinatorial optimization, trade-offs between conflicting objectives
play a crucial role. For example, route guidance systems are a classical application of the
shortest path problem. Yet, a good route guidance should allow the driver to make an informed
choice to balance travel time and fuel consumption.

It is well-known that even for this basic example, the bicriteria shortest path problem, the
number of Pareto optimal (i.e., non-dominated) solutions can grow exponentially with the size
of the network. Decision makers may have different preferences how much extra fuel to spend
on less travel time. Thus, a central task of multicriteria optimization is to either find a single
solution based on a priori expressed trade-off preferences of the decision maker, or to identify a
set of solutions that is of manageable (in mathematical terms: polynomial) size but still reflects
all possible trade-off options at least approximately.

A straightforward way to a single solution is the weighted-sum method: The trade-off prefer-
ences are specified by two non-negative weights for time and fuel consumption. The navigation
system then chooses a route minimizing the weighted sum of the two objectives. Unfortunately,
this method deprives the decision maker of essential solutions: Consider an instance with three
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possible routes with corresponding objective value vectors (10, 1), (6, 6), and (1, 10), respec-
tively. The route with fuel consumption 6 and travel time 6 will never be the optimum for any
choice of weights, despite being a balanced and thus attractive alternative for many drivers.

Formally, this shortcoming of the weighted-sum approach means that it cannot reach every
point of the Pareto set. This motivates the concept of compromise solutions and reference point
solutions [20], which returns a solution closest in the objective space to a given reference point.
(Compromise solutions use the component-wise minimum over all solutions as a reference point.)
The trade-off preferences are reflected by the choice of the norm in the objective space. Every
point in the Pareto set is a reference point solution for some norm. Reference point methods
are widely used in practice, serving as a core concept of MCDM1 tools (cf. [3, 15] for particular
examples and [6] for an overview). Still, they did not attract a lot of theoretical interest so far.

We show that approximating reference point solutions is computationally equivalent to ap-
proximating the Pareto set as proposed in Papadimitriou and Yannakakis [16]. Further, we
provide general techniques for approximation algorithms, by means of which reference point
solutions can often be approximated with the same factor as the single-criterion problem, most
notably for the case of LP-rounding. One byproduct are approximation algorithms for the
Pareto sets of many hard combinatorial optimization problems.

Related Work. Multicriteria optimization has a long tradition. The central notion of Pareto
optimality goes back to publications by V. Pareto in the late 19th and early 20th century. Ever
since then solution concepts in multicriteria optimization have been studied. The notion of
compromise solutions was introduced in 1973 by Yu [20] and further studied and extended in
the following years by Freimer and Yu [7], Gearhardt [8], Choo and Steuer [5] and many others.
Recently, Voorneveld et al. [18] gave an axiomatization of compromise solutions, in particular
those w.r.t. the Euclidean norm. The concept was later extended to more general reference
points and is incorporated in many MCDM tools [3, 6, 15].

Also the approximation of Pareto sets has been studied for several decades now. It was
initiated by Hansen in 1979 [11], followed by several publications on specific problems such as
shortest paths [19] and scheduling [4]. More general results on the existence and computability
of approximate Pareto sets were presented by Safer in his PhD thesis [17] in 1992, and in 2000
by Papadimitriou and Yannakakis [16]. Some of our results are based on the latter. Recently
Mittal and Schulz [13] have used approximate Pareto sets to approximately optimize low-rank
functions over polytopes. Their concept is similar to reference point methods as both can be
seen as an aggregation of multiple objectives into one.

Multicriteria optimization and in particular compromise solutions are also closely related
to robust optimization, in particular to min-max regret robustness. This connection has also
been noted and exploited by others, e.g. Aissi et al. [1, 2]. We extend some of their results to
reference point methods.

Our Contribution. Due to space limitations, we restrict ourselves to minimization problems
throughout this paper. We note that this is not without loss of generality and some of our
results do not to hold in the context of maximization.

In Section 3, we establish an algorithmic link between reference point solutions and ap-
proximation of the Pareto set. As a main result we show that approximating the reference
point solution, approximating the compromise solution, and approximating the Pareto set are
polynomially equivalent. In this context, we also prove that any point in the Pareto set can be
obtained as reference point solution for two classes of popular norms with polynomially sized
norm parameters, extending a known result by Gearhardt [8].

Combining these results with an easy constant factor approximation for reference points
yields the following interesting corollary: For any discrete minimization problem with a fixed
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number of criteria there is a constant factor approximation for the Pareto set if and only if there
is a constant factor approximation for the single-criterion version of the problem.

In Section 4, we show how to solve the reference point problem approximately for many com-
binatorial optimization problems. As a main result in this section, we show that single-objective
approximations obtained by LP-rounding directly carry over to approximation algorithms for
reference point methods. Along the way, we also prove that reference point solutions for linear
objectives on convex sets can be found efficiently. From this we get a short alternative proof
for the existence of an FPTAS for the Pareto set of such problems [16].

Finally, we extend a technique by Aissi et al. [1] from robust optimization to multicriteria
optimization, allowing us to construct an FPTAS for reference point problems from pseudopoly-
nomial algorithms.

2 Preliminaries

Throughout the paper, we let P denote a multicriteria discrete minimization problem with k
objectives. As usual in multicriteria optimization, we assume the number of objectives to be
fixed. For a given instance of P, the set of feasible solutions is denoted by X and c : X → Zk≥0

is the vector of objective functions. The objective vector set of the instance is defined by
Y := c(X ) ⊆ Zk≥0. A solution y ∈ Y is Pareto optimal if there does not exist y′ ∈ Y \ {y} with
y′ ≤ y. The Pareto set YP is the set of all Pareto optimal solutions.

Reference Point Methods. The goal of reference point methods is to find a solution min-
imizing the distance to a user-specified reference point yrp ∈ Zk≥0 w.r.t. a given norm ‖·‖.
A particularly interesting reference point is the ideal point yid ∈ Zk≥0, which is the point in

the objective space obtained by optimizing each objective individually, i.e., yid
i := miny∈Y yi.

Throughout this paper, we will restrict ourselves to reference points yrp with yrp ≤ yid. We call
these points feasible reference points.

Besides choosing the reference point, the decision maker can furthermore express her pref-
erences by specifying weights. For any norm ‖·‖ on Rk and λ ∈ Qk

≥0, let ‖·‖λ be the norm

defined by ‖y‖λ := ‖(λ1y1, . . . , λkyk)‖. We will consider the objective function ryrp,λ(y) =
‖yrp‖λ + ‖y − yrp‖λ, which we call relative distance2. Note that, for exact computation, min-
imizing the relative distance is equivalent to minimizing the absolute distance ‖y − yrp‖λ, as
the level sets of the two functions are the same. However, in the context of approximation, this
change in the objective function plays a crucial role. From a practical point of view, a decision
maker will care about the relative deviation from the ideal values. From a theoretical point of
view, any approximation algorithm for the absolute distance can be turned into an algorithm
that solves the single-criterion problem exactly (as the minimal distance to the ideal point is 0,
when focusing on a single criterion). As we do not want to restrict our study to exactly solvable
problems, we will use the relative distance, which allows us to also consider problems that are
only approximately solvable.

We now formally define the problem RP(P, ‖·‖): Given an instance of P, a feasible reference
point yrp ∈ Zk≥0, and a weight vector λ ∈ Qk

≥0 as input, find a solution x ∈ X that minimizes
ryrp,λ(c(x)). Given the particular interest of the ideal point, we will also consider the problem
CP(P, ‖·‖), which is also known as compromise programming : Given an instance of P and
λ ∈ Qk

≥0, find a solution x ∈ X that minimizes ryid,λ(c(x)).
Note that although the concept of reference point solutions is a generalization of compromise

solutions, in terms of complexity CP is not a special case of RP. In the former problem, the
ideal point is not given and might be hard to compute (in other words: we cannot even evaluate

2The relative distance is not a distance in the mathematical sense of a metric. In particular the triangle
inequality does not hold.
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the objective function efficiently), while in the latter case, the reference point is given in the
input. However, we will show in Section 3, that this difference only plays a minor role in the
context of approximability.

Norms. Throughout this paper, we will restrict ourselves to the norms fulfilling the following
two properties. We call a norm ‖·‖ monotone if y′ ≤ y′′ implies ‖y′‖ ≤ ‖y′′‖ for any y′, y′′ ∈ Rk

≥0.
We call a norm ‖·‖ polynomially decidable, if we can decide whether ‖y′‖ ≤ ‖y′′‖ in time
polynomial in the encoding size of y′ and y′′. We will mainly use the following families of
norms: the infinity-norm ‖y‖∞ := maxi |yi| (which we will sometimes also denote by 〈〈y〉〉∞
for convenience), the standard `p-norm ‖y‖p := (

∑
i |yi|p)

1
p , and the cornered p-norm 〈〈y〉〉p :=

maxi |yi| + 1
p

∑
i |yi|. The motivation for the cornered norm is twofold. Firstly, for general

values of p it will be hard to minimize a distance measured in the `p-norm because of the
exponents. The cornered p-norms are simpler, but still have properties similar to the `p-norms:
Their unit spheres are nested within each other, and for increasing values of p they approach
the axis parallel square. This allows to control the degree of balancing of the criteria in the
reference point solution. Secondly, the infinity-norm (often referred to as Chebyshev-norm in
this context) is very popular in MCDM-tools. Often it is augmented by a small linear term to
avoid weakly Pareto optimal solutions (cf. [5]), similar to the addition of the term 1

p‖y‖p.
Note that all `p- and cornered p-norms are monotone and polynomially decidable.

Approximation of the Pareto Set. We extend the well-known concept of approximation
algorithms for the single-objective case to approximability of the Pareto set in a similar way
as done in [16], with the slight difference of considering minimization problems and including
constant factor approximations. For α > 1, an α-approximate Pareto set is a set Yα ⊆ Y such
that for all y ∈ YP there is y′ ∈ Yα with y′ ≤ αy. An α-approximation algorithm for the
Pareto set is an algorithm that constructs an α-approximate Pareto set in polynomial time,
and an FPTAS for the Pareto set is a family of algorithms that contains for all ε > 0 a (1 + ε)-
approximation algorithm for the Pareto set with running time polynomial in 1

ε and the size of
the instance of P.

3 Equivalence of Approximation

In this section, we investigate the relation between approximation of the Pareto set, reference
point methods, and compromise programming. Our main theorem states these three notions of
approximability are essentially equivalent.

Theorem 3.1. Let P be a multicriteria discrete minimization problem. The following state-
ments are equivalent.

• There is a constant factor approximation (FPTAS, respectively) for the Pareto set of P.

• There is a constant factor approximation (FPTAS, respectively) for RP(P, ‖·‖) for every
monotone and polynomially decidable norm ‖·‖.

• There is a constant factor approximation (FPTAS, respectively) for RP(P, ‖·‖∞).

• There is a family of algorithms that, for each p ≥ 1, contains a constant factor approx-
imation (FPTAS, respectively) for RP(P, ‖·‖p) or RP(P, 〈〈·〉〉p), and the running time of
all algorithms is bounded by a polynomial in the input size and log(p).

• There is a constant factor approximation (FPTAS, respectively) for CP(P, ‖·‖) for every
monotone and polynomially decidable norm ‖·‖.
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• There is a constant factor approximation (FPTAS, respectively) for CP(P, ‖·‖∞).

• There is a family of algorithms that, for each p ≥ 1, contains a constant factor approx-
imation (FPTAS, respectively) for CP(P, ‖·‖p) or CP(P, 〈〈·〉〉p), and the running time of
all algorithms is bounded by a polynomial in the input size and log(p).

Before we discuss the proof of Theorem 3.1 in detail, we turn our attention to a result of
independent interest that motivates the algorithmic use of the `p- and cornered p-norms.

Reference Point Solutions and the Pareto Set. Gearhardt [8] showed that for both the
`p-norm and the cornered p-norm, if p tends to infinity then the distance between the Pareto set
and the set of compromise solutions with respect to all non-negative normalized weight vectors
tends to zero. This means that for discrete optimization problems with a finite set of feasible
solutions there is a finite value p0 for which the two sets coincide. We show that under the
assumption that all objective values have a polynomial encoding (cf. [16]), also p can be chosen
in such a way that it is polynomially encodable.

Theorem 3.2. Let yrp ∈ Zk≥0 be a feasible reference point. If the objective vector set Y is

contained in [0,M ]k, then the following statements hold true.

1. If p > log k

log(1+ 1
M

)
, then for any Pareto optimal solution y ∈ Y there is a weight vector

λ ∈ Qk
≥0 such that y minimizes ‖y − yrp‖λp .

2. If p > kM , then for any Pareto optimal solution y ∈ Y there is a weight vector λ ∈ Qk
≥0

such that y minimizes 〈〈y − yrp〉〉λp .

Proof. We first consider the cornered norm 〈〈y〉〉λp = maxi∈[k]{λiyi}+ 1
p

∑
i∈[k] λiyi. As demanded

in the theorem, let p > kM . Further let y ∈ Y be a Pareto optimal cost vector, and let
I := {i ∈ [k] : yi = yrp

i }. We set the weight vector λ as follows:

λi =

{
1 + k if i ∈ I

1
yi−yrpi

otherwise.

The weighted distance of y to the reference point is

〈〈y − yrp〉〉λp = max
i/∈I
{λi(yi − yrp

i )}+
1

p

∑
i/∈I

λi(yi − yrp
i ) = 1 +

1

p
(k − |I|) ≤ 1 +

k

p
.

Consider any y′ ∈ Y \ {y}. If there is an index j ∈ I with y′j > yj = yrp
j , then since Y ⊆ Zk

we know that y′j − y
rp
j ≥ 1 and therefore

〈〈y′ − yrp〉〉λp ≥ λj(y′j − y
rp
j ) +

1

p
λj(y

′
j − y

rp
j ) ≥ (1 +

1

p
) · λj > 1 + k > 1 +

k

p
,

so in this case y is closer to yrp than y′.
Otherwise, since y is Pareto optimal there is some j ∈ [k] such that yj < y′j , or with

integrality y′j − yj ≥ 1. On the other hand, we know that yj − yrp
j ≤ M . Therefore for this

index j,

λj(y
′
j − y

rp
j ) =

y′j − y
rp
j

yj − yrp
j

=
y′j − yj + yj − yrp

j

yj − yrp
j

= 1 +
y′j − yj
yj − yrp

j

≥ 1 +
1

M
,

and as a consequence

〈〈y′ − yrp〉〉λp ≥ max
i∈[k]
{λi(y′i − y

rp
i )} ≥ 1 +

1

M
> 1 +

k

p
,
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so again y is closer to yrp than y′.
For the `p-norm we let p > log k

log(1+ 1
M

)
, and set the weight vector λ as before. We get

(
‖y − yrp‖λp

)p
=
∑
i/∈I

(
yi − yrp

i

yi − yrp
i

)p
= k − |I| ≤ k .

If there is a j ∈ I with y′j > yj = yrp
j , then(

‖y′ − yrp‖λp
)p ≥ (λj(y′j − yrp

j )
)p ≥ λpj > k .

Otherwise, with the same choice of j ∈ [k] as above,(
‖y′ − yrp‖λp

)p ≥ (λj(y
′
j − y

rp
j ))p ≥

(
1 +

1

M

)p
> k ,

where the last inequality holds by the choice of p. Thus again in both cases y is closer to yrp

than y′, completing the proof.

From Approximate Pareto Sets to Approximating Reference Point Solutions. We
start the proof of Theorem 3.1 by showing that from an α-approximate Pareto set we can always
choose an α-approximate solution to RP.

Lemma 3.3. Let yrp be a feasible reference point, and let Yα be an α-approximate Pareto
set of P. Then for any monotone norm ‖·‖, miny∈Yα r(y) ≤ α · miny∈Y r(y), where r(y) =
‖yrp‖+ ‖y − yrp‖.

Proof. Let y∗ ∈ Y be an optimal solution to miny∈Y r(y). By monotonicity, we can w.l.o.g.
assume y∗ to be Pareto optimal. Thus, there is y′ ∈ Yα such that y′ ≤ αy∗. Using monotonicity
and triangle inequality, we get

‖y′ − yrp‖ ≤ ‖α(y∗ − yrp) + (α− 1)yrp‖ ≤ α‖y∗ − yrp‖+ (α− 1)‖yrp‖ .

Reformulation yields

min
y∈Yα

r(y) ≤ r(y′) = ‖yrp‖+ ‖y′ − yrp‖ ≤ α(‖yrp‖+ ‖y∗ − yrp‖) = αr(y∗) .

Corollary 3.4. If there is an α-approximation algorithm for the Pareto set of P, then there is
an α-approximation for RP(P, ‖·‖) for every monotone and polynomially decidable norm ‖·‖.

In fact, we can also approximate the compromise solution without knowing the exact ideal
point: As Yα contains an α-approximate optimal solution for each objective, we can obtain a
reference point yrp with 1

αy
id ≤ yrp ≤ yid. By choosing the point closest to yrp from Yα we get

an α2-approximation to the compromise solution:

Corollary 3.5. If there is an α-approximation algorithm for the Pareto set of P, then there is
an α2-approximation for CP(P, ‖·‖) for every monotone and polynomially decidable norm ‖·‖.

Proof. Let Yα be an α-approximation to the Pareto set. Observe that

yrp
i :=

⌈
1
α min
y∈Yα

yi

⌉
yields a feasible reference point with yrp ≤ yid ≤ αyrp.

Now let y′ := arg miny∈Yα‖yrp‖ + ‖y − yrp‖, which by Corollary 3.4 is an α-approximation
to the reference point solution for yrp. Thus, for the compromise solution y∗, we get

‖y′ − yrp‖ ≤ α‖y∗ − yrp‖+ (α− 1)‖yrp‖ .
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By this fact and monotonicity, we get

‖y′ − yid‖ ≤ ‖y′ − yrp‖ ≤ α‖y∗ − yrp‖+ (α− 1)‖yrp‖ .

Observe that yid − yrp ≤ (α− 1)yrp and thus, again by monotonicity

‖y∗ − yrp‖ ≤ ‖y∗ − yrp‖+ (α− 1)‖yrp‖ .

This finally yields,

‖yid‖+ ‖y′ − yid‖ ≤ ‖yid‖+ α(‖y∗ − yrp‖+ (α− 1)‖yrp‖) + (α− 1)‖yrp‖
≤ α2‖yid‖+ α‖y∗ − yid‖ ,

which concludes the proof.

From Approximating a Reference Point to an Approximate Pareto Set. In order to
show the converse of the result proven above, we use a characterization from [16], stating that
approximability of the Pareto set is equivalent to tractability of the so-called Gap problem.

Definition 3.6 (Gap Problem). Given an instance of P and a vector y ∈ Qk
≥0 as input, the

Gap problem for approximation factor α > 1, denoted by Gap(P, α), is to find a solution y′ ∈ Y
with y′ ≤ y or to guarantee that there is no solution y′′ ∈ Y with y′′ ≤ 1

α y.

Theorem 3.7 (Papadimitriou & Yannakakis, 2000). Let P be a multicriteria discrete mini-
mization problem and let α > 1. If there is an α-approximation algorithm for the Pareto set,
then Gap(P, α) is solvable in polynomial time. If Gap(P, α) is solvable in polynomial time,
then there is an α2-approximation algorithm for the Pareto set.

We now show how to use an approximation algorithm for RP to solve the Gap problem
with a slight increase in the approximation factor. In fact, our result does not even require the
algorithm to solve RP for every given reference point. It suffices to find a particular reference
point on an instance-by-instance basis that can be approximated. We formalize this by intro-
ducing two algorithms, the first acting as an oracle computing a suitable reference point, which
then can be approximated by the second algorithm.3

Lemma 3.8. Let α > 1 and set β := α2

2α−1 . There is a polynomial time algorithm for Gap(P, α),
if there are two polynomial time algorithms A1, A2 such that,

• given an instance of P, algorithm A1 computes a feasible reference point yrp ∈ Qk
≥0 for

that instance, and,

• additionally given yrp and λ ∈ Qk
≥0, algorithm A2 computes in polynomial time a solution

y′ ∈ Y with r(y′) ≤ βminz∈Y r(z) for r(z) = ‖yrp‖λ∞ + ‖yrp − z‖λ∞.

Proof. Let y ∈ Qk
≥0 be the input to the Gap problem. W.l.o.g., we can assume that y ≥ αyrp

for the reference point yrp computed by A1, as otherwise there is no y′ ≤ 1
αy and Gap can be

answered negatively.
We will solve the Gap problem with a single call of the β-approximation algorithm for

RP(P, ‖·‖∞). For i ∈ [k], let λi := 1
yi−yrpi

if yi > yrp
i and λi := 2 if yi = yrp

i = 0, and let y′ be a

β-approximation to minz∈Y r(z).

3Note that it is not sufficient for the first algorithm to simply return a trivial feasible reference point such as
0, as it has to ensure that the second algorithm can provide an approximation for this point. E.g., in the proof
of Corollary 3.9, it needs to return a point close to the ideal point.
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If r(y′) ≤ r(y), we return y′ as answer to the Gap problem:

λi(y
′
i − y

rp
i ) ≤ ‖y′ − yrp‖λ∞ ≤ ‖y − yrp‖λ∞ ≤ 1

for all i ∈ [k] by choice of the weights. Dividing by λi yields y′i ≤ yi if yi > 0 or y′i ≤ 1
2 if yi = 0.

In the latter case, integrality of y′i implies y′i = 0.
If r(y′) > r(y), we answer Gap negatively: Let y′′ ∈ Y. We show that there is an i ∈ [k]

with y′′i >
1
αyi. First observe that βr(y′′) ≥ r(y′) > r(y), which implies

β‖y′′ − yrp‖λ∞ > ‖y − yrp‖λ∞ − (β − 1)‖yrp‖λ∞ .

Plugging in the definition of the weights and using y ≥ αyrp yields

β
y′′i −y

rp
i

yi−yrpi
>

yj−yrpj
yj−yrpj

− (β − 1)
yrp
j′

yj′−y
rp

j′
≥ 1− β−1

α−1 ,

with i, j, j′ being the indices of those components attaining the maxima in the norms. (If either
of the denominators is 0 then y′′i >

1
αyi follows directly.) Using the fact that 1 < β ≤ α, we get

βy′′i > (1− β−1
α−1)(yi − yrp

i ) + βyrp
i ≥ (1− β−1

α−1)yi .

It is easy to verify that β = α2

2α−1 now implies y′′i >
1
αyi and the negative answer to the Gap

problem is correct.

As a particular application of Lemma 3.8 we can show now that also an approximation to
CP suffices to approximate the Pareto set:

Corollary 3.9. Let α > 1 and set β :=
√

α2

2α−1 . There is a polynomial time algorithm for

Gap(P, α), if there is a β-approximation algorithm for CP(P, ‖·‖∞).

Proof. We show that algorithm A1 and A2 exist, as required by Lemma 3.8.
Algorithm A1: For every i ∈ [k], let ȳ(i) be a β-approximation to minz∈Y ryid,λ̄(z) for weights

λ̄i = 1 and λ̄j = 0 for j ∈ [k] \ {i}. Then yrp
i := 1

β ȳ
(i)
i defines a feasible reference point with

yrp ≤ yid ≤ βyrp.
Algorithm A2: Let λ ∈ Qk. Let y′ be a β-approximation to minz∈Y ryid,λ(z), and let

y∗ = argminz∈Y ryrp,λ(z) be an optimal solution to RP. We show that ryrp,λ(y′) ≤ β2ryrp,λ(y∗),
which concludes the proof.

‖yrp‖∞ + ‖y′ − yrp‖∞ ≤ ‖yrp‖∞ + ‖y′ − yid‖∞ + ‖yid − yrp‖∞ ≤ β‖yrp‖∞ + ‖y′ − yid‖∞
≤ β‖yrp‖∞ + β‖y∗ − yid‖∞ + (β − 1)‖yid‖∞
≤ β2‖yrp‖∞ + β‖y∗ − yid‖∞ .

Corresponding versions of Lemma 3.8 and Corollary 3.9 with the same approximation factors
can be shown for the ‖·‖p- and 〈〈·〉〉p-norms. These results have been moved to the appendix.

4 Approximating Reference Point Solutions

Approximation by Weighted Sum. Although not all Pareto optimal solutions can be
reached by minimizing a weighted sum, this method still provides an easy way to transfer
approximability results from the single-criterion world to reference point methods.

Theorem 4.1. If there is an α-approximation for miny∈Y λ
T y, then there is a kα-approximation

for RP(P, ‖·‖∞).

8



Proof. Let yrp be a feasible reference point and λ ∈ Qk
≥0. Let y∗ = argmin ryrp,λ(y) and let

y′ ∈ Y be an α-approximation to miny∈Y λ
T y. Then

‖yrp‖λ∞ + ‖y′ − yrp‖λ∞ ≤ ‖yrp‖λ∞ + kλT (y′ − yrp) ≤ ‖yrp‖λ∞ + αkλT y∗ − kλT yrp

≤ ‖yrp‖λ∞ + αkλT (y∗ − yrp) + (α− 1)kλT yrp

≤ kα(‖yrp‖λ∞ + ‖y∗ − yrp‖λ∞) .

In combination with Theorem 3.1, this implies the following result.

Corollary 4.2. For any multicriteria combinatorial minimization problem P with a constant
number of linear objectives, there is a constant factor approximation for the Pareto set of P if
and only if there is a constant factor approximation for the single-criterion version of P.

Convex Optimization with Linear Objectives. For optimization problems where the
solution space is convex and the objectives are linear (e.g. linear programming), we can compute
reference point solutions w.r.t. the cornered norm exactly:

Theorem 4.3 (Reference Point Solutions for Convex Optimization). For a multicriteria min-
imization problem minx∈X Cx with a convex solution set X ⊆ Qn for which a polynomial
separation algorithm exists, and a cost matrix C ∈ Qk×n, the problem minx∈X r(Cx) with
r(y) = 〈〈yrp〉〉p + 〈〈y − yrp〉〉p, for any feasible reference point yrp and any p ∈ [1,∞], is again a
convex optimization problem with linear objectives and thus solvable in polynomial time.

Proof. The problem can be formulated as follows:

min
x∈X

r(Cx) = ‖yrp‖∞ +


min ∆ + 1

p · 1
TCx

s.t. Cx− yrp ≤ ∆ · 1
x ∈ X
∆ ∈ R .

Here 1 denotes the vector of ones of corresponding dimension. In the optimum ∆ = maxi{ci·x−
yrp
i }, and therefore the two programs are equivalent. The objective is clearly linear, and the

solution space is X ×R intersected with the halfspaces defined by the inequalities ci·x−yrp
i ≤ ∆,

i ∈ [k], and thus convex.
Since we can solve the separation problem for the original set X , we can also solve it for the

set with the added inequalities. By the equivalence of separation and optimization (cf. [9]) we
can solve minx∈X r(Cx) in polynomial time.

Remark. A special case of convex optimization problems are linear programs (LPs). From
our result it follows that we can exactly compute reference point solutions for multicriteria LPs.
It also yields a nice alternative proof of the existence of an FPTAS for the Pareto set, which
has first been proven in [16] using an involved geometric argument.

A different argument for the approximability of Pareto sets of linear programs has indepen-
dently been noted by Mittal and Schulz [13]. They use it to approximately optimize low-rank
functions over polytopes.

Corollary 4.4. Let P be a multicriteria minimization problem with convex feasible set and
linear objective functions. Assume there is a positive polynomial π such that Y ⊆ {y ∈ Qk : yi ≥

1
π(|I|) ∀i ∈ [k]}, where |I| is the encoding length of the instance. If there is a polynomial time
algorithm for the separation problem of P, then there is an FPTAS for the Pareto set.

9



Remark (Convex sets and the integrality assumption). Note that our general integrality as-
sumption Y ⊆ Zk≥0 for discrete optimization problems introduced in Section 2 does not hold
for the case of convex optimization problems in Theorem 4.3 and Corollary 4.4. However, by
assuming yi ≥ 1

π(|I|) for all occurring objective values in Corollary 4.4, we ensure that all pre-

requisites stated in [16] for Theorem 3.7 are still fulfilled. Furthermore observe that, while
our proof of Lemma 3.8 also assumed integral objectives, we used this integrality assumption
only for showing that if the solution y′ computed by algorithm A2 fulfills r(y′) ≤ r(y) then
yi = 0 implies y′i = 0. However, we can ignore this case, as by our assumption all objectives
are strictly positive and thus yi = 0 already implies that the answer to Gap is negative. Thus,
both Lemma 3.8 and Theorem 3.7 are still valid for convex optimization problems fulfilling the
condition of Corollary 4.4.

Proof of Corollary 4.4. By Theorem 4.3, we can compute an optimal solution to RP(P, ‖·‖∞)
for any reference point in polynomial time. Thus, by Lemma 3.8 we can solve Gap(P, 1 + ε)
in polynomial time for any ε > 0 (with running time independent of ε), which by Theorem 3.7
gives an FPTAS for the Pareto set.

Approximation through LP Rounding. One of the most successful techniques for the
design of approximation algorithms for integer problems is LP rounding : The problem is for-
mulated as a linear integer program (IP), then the integrality constraints are relaxed and the
resulting LP is solved, and finally the optimal fractional solution is rounded to a feasible integral
solution, losing only a certain factor in the objective.

We show that these algorithms can be adapted such that they also approximate the reference
point version of the problem with the same approximation factor.

Theorem 4.5. Consider a multicriteria minimization problem minx∈X Cx with a solution set
X ⊆ Zn≥0 and a cost matrix C ∈ Qk×n. If there exist

• a convex relaxation X ′ for which the separation problem can be solved in polynomial time,
and

• a polynomial time rounding procedure R : X ′ → X such that for all c ∈ Qn
≥0 and all

x′ ∈ X ′ it holds that cTR(x′) ≤ αcTx′,

then for any feasible reference point yrp and any p ∈ [1,∞] there is a α-approximation algorithm
for minx∈X r(Cx) with r(y) = 〈〈yrp〉〉p + 〈〈y − yrp〉〉p.

Proof. From Theorem 4.3 it follows that we can compute in polynomial time a fractional solution
x′ ∈ X ′ minimizing r(Cx). Let x = R(x′). Then

r(Cx) = max
i∈[k]
{yrp
i }+ max

i∈[k]
{(Cx)i − yrp

i }+
1

p
·
∑
i∈[k]

(Cx)i

≤ max
i∈[k]
{yrp
i }+ max

i∈[k]
{α(Cx′)i − yrp

i }+ α · 1

p
·
∑
i∈[k]

(Cx′)i

= max
i∈[k]
{yrp
i }+ max

i∈[k]

{
α
(
(Cx′)i − yrp

i

)
+ (α− 1)yrp

i

}
+ α · 1

p
·
∑
i∈[k]

(Cx′)i

≤ α ·max
i∈[k]
{yrp
i }+ α ·max

i∈[k]

{
(Cx′)i − yrp

i

}
+ α · 1

p
·
∑
i∈[k]

(Cx′)i

= α · r(Cx′) .

10



This immediately results in the approximability, (with a factor independent of k,) of reference
point solutions and the Pareto set for several classical combinatorial optimization problems. We
give two examples here.

For Set Cover, in 1982 Hochbaum [12] presented an LP-based κ-approximation algorithm,
where κ is the maximum cardinality of a set, thus there is a κ-approximation algorithm for the
corresponding reference point version and a O(κ2)-approximation algorithm for the Pareto set.
A notable special case is Vertex Cover, where κ = 2.

For the scheduling problem of minimizing the weighted sum of completion times on a single
machine with release dates (1|rj |

∑
wjCj) Hall et al. [10] gave a 3-approximation algorithm

based on an LP-relaxation, resulting in a 3-approximation for compromise solutions, which
gives a constant factor approximation for the Pareto set as well. Möhring et al. [14] extended
this to stochastic scheduling with random processing times (P |pj ∼ stoch, rj |E[

∑
wjCj ]), for

which we consequently also get constant factor approximation for the multicriteria problems.

Remark. While we usually restrict ourselves to the case of a constant number of criteria, the
results on convex optimization and LP-rounding also hold for a polynomial number of criteria.
This is due to the fact that we can still solve the linear program if we add a polynomial number
of constraints.

From Pseudopolynomial Algorithms to Approximation Schemes. Multicriteria op-
timization and in particular the concept of compromise solutions is closely related to robust
optimization. If each criterion is considered as one scenario in the robust setting, then a com-
promise solution w.r.t. ‖·‖∞ is exactly the same as a min-max regret robust solution.

Aissi et al. [1] consider this robust setting and show that if upper and lower bounds on the
optimum can be computed that only differ by a polynomial factor, and if there is a pseudopoly-
nomial algorithm whose running time depends on the size of the instance and the upper bound,
then there is an FPTAS for the min-max regret robust problem. We show that this result can
be extended to reference point solutions.

Theorem 4.6. Consider a multicriteria minimization problem with a set of feasible solutions
X ⊆ {0, 1}n and cost matrix C ∈ Zk×n≥0 . For any p ∈ [1,∞], if

1. for any instance I = (X , C), and any feasible reference point yrp, a lower and an upper
bound L and U on minx∈X r(Cx) can be computed in time π1(|I|), such that U ≤ π2(|I|)L,
where π1 and π2 are non-decreasing polynomials,

2. and there exists an algorithm that solves minx∈X r(Cx) for any instance I = (X , C) in
time π3(|I|, U), where π3 is a non-decreasing polynomial,

then there is an FPTAS for minx∈X r(Cx), where r(y) = 〈〈yrp〉〉p + 〈〈y − yrp〉〉p.

By |I| we denote the encoding length of the instance I.

Proof. To compute a (1+ε)-approximation to the reference point solution, we set ε′ = ε(1+ k
p )−1

and apply the pseudopolynomial algorithm to a modified instance I with cost coefficients cij :=⌊
3n
ε′L cij

⌋
. Then

ε′L

3n
· cij ≤ cij <

ε′L

3n
(cij + 1) .

The reference point for the modified instance is defined by yrp
i :=

⌊
3n
ε′L y

rp
i

⌋
. This reference point

is feasible for the modified instance, and it holds that

ε′L

3n
yrp
i ≤ y

rp
i <

ε′L

3n
yrp
i +

ε′L

3n
<
ε′L

3n
yrp
i +

ε′L

3
. (1)
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Let x∗ and x∗ be reference point solutions for I and I, respectively. We now bound the
value of x∗ w.r.t. the original costs c. Let r and r denote the relative distance for the original
and the modified costs, respectively. We get

r(Cx∗) = 〈〈yrp〉〉p + 〈〈Cx∗ − yrp〉〉p

≤ ε′L

3n
〈〈yrp〉〉p +

ε′L

3

(
1 +

k

p

)
+ max

i∈[k]

{
ε′L

3n
(cix

∗ − yrp
i )

}
+
ε′L

3
+

1

p

∑
i∈[k]

(
ε′L

3n
(cix

∗ − yrp
i ) +

ε′L

3

)

=
ε′L

3n
〈〈yrp〉〉p +

ε′L

3n
〈〈Cx∗ − yrp

i 〉〉p +
2ε′L

3

(
1 +

k

p

)
≤ ε′L

3n
〈〈yrp〉〉p +

ε′L

3n
〈〈Cx∗ − yrp

i 〉〉p +
2ε′L

3

(
1 +

k

p

)
≤ 〈〈yrp〉〉p +

ε′L

3n

(
3n

ε′L
〈〈Cx∗ − yrp〉〉p + n

(
1 +

k

p

))
+

2ε′L

3

(
1 +

k

p

)
= 〈〈yrp〉〉p + 〈〈Cx∗ − yrp〉〉p + ε′L

(
1 +

k

p

)
= r(Cx∗) + εL

≤ (1 + ε)r(Cx∗) .

It remains to be shown that x∗ can be computed in time polynomial in |I| and 1
ε . For this,

denote by L and U the lower and upper bounds on the optimal value OPT of the modified
instance I. According to the requirements of the theorem we can compute L and then x∗ in
time

π1(|I|) + π3(|I|, U) ≤ π1(|I|) + π3(|I|, π2(|I|)L)

≤ π1(|I|) + π3(|I|, π2(|I|)OPT)

≤ π1(|I|) + π3

(
|I|, π2(|I|)

(
3n
ε′ π2(|I|) + n(1 + k

p )
))

,

where the last inequality holds because

OPT ≤ 3n

ε′L
〈〈yrp〉〉p +

3n

ε′L
〈〈Cx∗ − yrp〉〉p + n

(
1 +

k

p

)
≤ 3n

ε′L
· U + n

(
1 +

k

p

)
≤ 3n

ε′
· π2(|I|) + n

(
1 +

k

p

)
.

Finally note that |I| ≤ π4(|I|, log 1
ε , log k

p ) for some polynomial π4, thus the above calculations
prove that the running time is indeed polynomial.

For compromise solutions, we can not choose the reference point of the modified instance as
we see fit. However, also for the ideal point eq. (1) still holds. To see this, denote the respective
ideal points by yid and yid and let x(i), x(i) for i ∈ [k] be optimal solutions of minx∈X cix and
minx∈X cix.

It holds that

yid
i = cix

(j) ≥ cix(j) ≥ ε′L

3n
cix

(j) =
ε′L

3n
yid
i ,

yid
i = cix

(j) ≤ ε′L

3n
(ci + 1T)x(j) ≤ ε′L

3n
cix

(j) +
ε′L

3
≤ ε′L

3n
yid
i +

ε′L

3
,

so eq. (1) also holds for the ideal points and the rest of the proof works as before.
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Remark. For the running time it is essential that p is fixed or at least bounded from below by
a positive constant (e.g. p ≥ 1), as the running time is only polynomial in 1

p . Since for p → 0
compromise solutions at some point is equivalent to the weighted sum technique this is only a
minor restriction.

Remark. Theorem 4.6 also holds for CP(P, 〈〈·〉〉p).

Similarly to Proposition 1 in [1], we can show that the necessary bounds U and L can
be computed if the single-objective problem is tractable. This is a direct implication of the
weighted sum approximation described in Theorem 4.1.

Corollary 4.7. If there is an α-approximation for the single-criterion version of P, then for
all instances of RP(P, ‖·‖) we can compute L such that L ≤ miny∈Y r(y) ≤ αkL.

The pseudopolynomial algorithms for the shortest path problem (SP) and the minimum
spanning tree problem (MST) presented in [1] can be used to compute reference point solutions
as well, as they both compute all (non-dominated) regret vectors (that obey the upper bound
U), and the reference point solution always has a non-dominated regret vector.

Corollary 4.8. There is an FPTAS for RP(SP, 〈〈·〉〉p) and RP(MST, 〈〈·〉〉p) for any p ∈ [1,∞].

5 Conclusion

Reference point methods are a popular tool of practitioners in multicriteria optimization. To
the best of our knowledge, this paper provides the first extensive theoretical study of these
methods in the context of approximability.

Our main result gives a new twist to approximation in multicriteria optimization: We show
that the approximability of the Pareto set of a multicriteria problem can in fact be reduced
to the approximation of a single objective, namely the relative distance to a feasible reference
point. We believe that this insight can spark off new and interesting research in this field. The
applicability of the presented methods is supported by several examples, such as the approxi-
mation of reference point solutions through LP rounding or dynamic programming.

Acknowledgment. The authors would like to thank Günter Ziegler for his help in simplifying
the proof of Lemma 3.3.
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Appendix

Lemma (3.8 revisited, for 〈〈·〉〉p and ‖·‖p). Let α > 1 and set β := α2

2α−1 . There is a polynomial
time algorithm for Gap(P, α), if there are two polynomial time algorithms A1, A2 such that,

• given an instance of P, algorithm A1 computes in polynomial time a feasible reference
point yrp ∈ Qk

≥0 for that instance, and,

• additionally given yrp and λ ∈ Qk
≥0 and p ≥ 1, algorithm A2 computes in polynomial

time a solution y′ ∈ Y with r(y′) ≤ βminz∈Y r(z) for r(z) = 〈〈yrp〉〉λp + 〈〈yrp − z〉〉λp or

r(z) = ‖yrp‖λp + ‖yrp − z‖λp , respectively.

Proof. Let y ∈ Qk
≥0 be the input to the Gap problem. W.l.o.g., we can assume that y ≥ αyrp

for the reference point yrp computed by A1, as otherwise there is no y′ ≤ 1
αy and Gap can

answered negatively.
We will solve the Gap problem with a single call of the β-approximation algorithm for

RP(P, 〈〈·〉〉p) (or RP(P, ‖·‖p), respectively) with

p := max

{
log k

log(1 + 1
2M )

, 2kMq

}
,

where q is the largest denominator of all the components in y and M is an upper bound on the
objectives in Y.

Let I := {i ∈ [k] : yi = yrp
i = 0}. For i ∈ [k], λi =

{
2 if i ∈ I

1
yi−yrpi

otherwise.

Let y′ be a β-approximation to minz∈Y r(z).
If r(y′) ≤ r(y), we return y′ as answer to the Gap problem: We observe

λi(y
′
i − y

rp
i ) ≤ 〈〈y′ − yrp〉〉λp ≤ 〈〈y − yrp〉〉λp ≤ 1 + k

p .

If i ∈ I, we have y′i ≤ 1
2(1 + 1

2Mq ) < 1. If i /∈ I, then y′i ≤ (1 + k
p )yi ≤ yi + 1

2q < yi + 1. In both

cases, integrality of y′ implies y′i ≤ yi. The same holds for the ‖·‖p-norm with 1 + k
p replaced

by p
√
k—in this case, the choice of p guarantees p

√
k · y′i < y′i + 1.

If r(y′) > r(y), we answer Gap negatively: Let y′′ ∈ Y. We show that there is an i ∈ [k]
with y′′i > 1

αyi. This is true if y′′i > 0 = yi for any i ∈ I. Thus, we can restrict to the
projection of Qk to the components in [k] \ I, and w.l.o.g. assume I = ∅. First observe that
βr(y′′) ≥ r(y′) > r(y), which implies

β〈〈y′′ − yrp〉〉λp > 〈〈y − yrp〉〉λp − (β − 1)〈〈yrp〉〉λp .

It is easy to verify that 〈〈z〉〉λp ≤ (1+ k
p )‖z‖λ∞ for all z ∈ Qk, and furthermore 〈〈y−yrp〉〉λp = 1+ k

p
as I = ∅. This yields

(1 + k
p )β‖y′′ − yrp‖λ∞ > (1 + k

p )‖y − yrp‖λ∞ − (1 + k
p )(β − 1)‖yrp‖λ∞ ,

which brings us back to the case of the ‖·‖∞-norm. The same holds true for the ‖·‖p-norm with
the factor 1 + k

p replaced by p
√
k.

Corollary (3.9 revisited, for 〈〈·〉〉p and ‖·‖p). Let α > 1 and set β :=
√

α2

2α−1 . There is a poly-

nomial time algorithm for Gap(P, α), if there is a β-approximation algorithm for CP(P, 〈〈·〉〉p)
(CP(P, ‖·‖p), respectively) for every p ≥ 1 and the running time of all algorithms is bounded by
a polynomial in the instance size and log(p).

Proof. The proof is identical to that of Corollary 3.9 given in the paper. In fact, the second
part of this proof only uses properties of monotone norms.
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