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Abstract We consider a generalization of the Connected Facility Lo-
cation problem where clients may connect to open facilities via access
trees shared by multiple clients. The task is to choose facilities to open,
to connect these facilities by a core Steiner tree (of infinite capacity),
and to design and dimension the access trees, such that the capacities
installed on the edges of these trees suffice to simultaneously route all
clients’ demands to the open facilities. We assume that the available edge
capacities are given by a set of different cable types whose costs obey
economies of scale. The objective is to minimize the total cost of open-
ing facilities, building the core Steiner tree among them, and installing
capacities on the access tree edges.

In this paper, we devise the first constant-factor approximation algorithm
for this problem. We also present a factor 6.72 approximation algorithm
for a simplified version of the problem where multiples of only one single
cable type can be installed on the access edges.

1 Introduction

We study a generalization of the Connected Facility Location problem (ConFL)
where not only direct connections between clients and open facilities, but also
shared access trees connecting multiple clients to an open facility are allowed.
Accordingly, also more realistic capacity and cost structures with flow-dependent
buy-at-bulk costs for the access edges are considered. The resulting Connected
Facility Location with buy-at-bulk edge costs (Buy-at-bulk ConFL) problem cap-
tures the central aspects of both the buy-at-bulk network design problem and
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the ConFL problem. In this paper, we study of the approximability of the buy-
at-bulk ConFL problem. Although both the ConFL and the buy-at-bulk network
design problem have been well studied in the past, the combination of them has
not been considered in the literature, to the best of our knowledge.

In buy-at-bulk ConFL, we are given an undirected graph G = (V,E) with
nonnegative edge lengths ce ∈ Z≥0, e ∈ E, obeying the triangle inequality, a set
F ⊂ V of facilities with opening costs fi ∈ Z≥0, i ∈ F , and a set of clients D ⊂ V
with demands dj ∈ Z>0, j ∈ D. We are also given K types of cables that may be
used to connect clients to open facilities. A cable of type i has capacity ui ∈ Z>0

and cost (per unit length) σi ∈ Z≥0. Core links, which are used to connect the
open facilities, have a cost (per unit length) of M ∈ Z≥0. The task is to find
a subset I ⊆ F of facilities to open, a Steiner tree S ⊆ E connecting the open
facilities, and a forest F ⊆ E with a cable installation on its edges, such that
F connects each client to exactly one open facility and the installed capacities
suffice to simultaneously route all clients’ demands to the open facilities. The
objective is to minimize the total cost, where the cost for using edge e in the
Steiner tree is Mce and the cost for installing a single cable of type i on edge e
is σic(e). We also consider a simpler version of this problem with only a single
cable type, which we denote by Single-Cable Connected facility location problem
(Single-Cable-ConFL).

Both problems are NP-hard, as they contain the classical ConFL problem
as the special case with only one cable type of capacity u1 = 1. In this paper,
we develop constant-factor approximation algorithms for these problems. To
the best of our knowledge, these are the first polynomial time approximation
algorithms for these problems.

The classical Connected Facility Location problem is well-studied in the lit-
erature. Gupta et al. [1] obtain a 10.66-approximation for this problem, based
on rounding an exponential size LP. Swamy and Kumar [2] later improved the
approximation ratio to 8.55, using a primal-dual algorithm. Applying LP round-
ing techniques, Hasan et al. [3] improved the approximation ratio to 8.29 in
the general case and to 7 in case all opening costs are equal. Recently, a ran-
domized algorithmic framework for ConFL has been presented by Eisenbrand
et al. [4], achieving a factor 4 approximation guarantee. The algorithm can be
viewed as a randomized decomposition of the problem into the problem of find-
ing the good facility locations and designing a good Steiner tree. It first solves
the (unconnected) facility location problem and then randomly samples clients
and constructs a Steiner tree connecting them. Their analysis exploits the core
detouring scheme to bound the cost of assigning the clients to open facilities.
A similar framework introduced by Grandoni et al. [5] yields a factor 3.19 ap-
proximation algorithm for ConFL. Grandoni’s algorithm first randomly samples
clients and constructs a Steiner tree connecting them. Then it solves an associ-
ated facility location problem, where the opening cost of each facility is increased
by the cost of connecting the facility to the Steiner tree computed in the first
step. This way, the opening cost and the cost of connecting the open facilities
to each other are bounded by the opening cost of the facility location solution
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and the cost of the constructed Steiner tree. As in [4], the expected assignment
cost can be bounded by exploiting the core-detouring technique.

The (unsplittable) Single-Sink Buy-at-Bulk problem (SSBB) can be viewed as
a special case of the buy-at-bulk ConFL problem where the set of interconnected
facilities are given in advance. SSBB has received a lot of attention in the lit-
erature. Two variants of SSBB are considered, the unsplittable SSBB (u-SSBB)
and splittable SSBB (s-SSBB). In the unsplittable case the flow originating at a
client is routed along a single path to the common sink, whereas in the splittable
case the flow can be routed along several paths. Grandoni et al. [14] show how to
transform a ρ-approximation algorithm for s-SSBB into a 2ρ-approximation algo-
rithm for u-SSBB. Several approximation algorithms applicable to both variants
u-SSBB and s-SSBB have been proposed in the literature. Meyerson et al. [6]
gave a O(log n) approximation. Using LP rounding techniques, Garg et al. [7]
later developed a O(k) approximation, where k is the number of cable types.
Hassin et al. [8] provide a constant factor approximation for the single cable
version of the problem. The first constant factor approximation for the problem
with multiple cable types was provided by Guha et al. [9], with an approxi-
mation ratio of roughly 2000. Talwar [10] showed that the IP formulation of
this problem has a constant integrality gap and provided a factor 216 approx-
imation algorithm for both problem variants. Gupta et al. [11] later presented
a simple 76.8-approximation algorithm for the s-SSBB using random-sampling
techniques. Unlike the previous algorithms, their algorithm does not guarantee
that the flow is unsplittable. Modifying Gupta’s algorithm, the approximation
was later reduced to 65.49 by Jothi et al. [12], and then to 24.92 by Grandoni
et al. [13]. Finally, Grandoni et al. [14] improved the approximation ratio to 20.41
for s-SSBB by applying the core-detouring technique and showed how to trans-
form their algorithm into a 40.82 approximation algorithm for the unsplittable
case.

If we relax the requirement to connect the open facilities by a Steiner tree,
the buy-at-bulk ConFL problem reduces to a k-cable facility location problem,
which has been introduced by Ravi et al. [15]. For the single cable version of this
problem, Ravi et al. developed a constant factor approximation algorithm that
computes a feasible solution by merging a facility location solution and a Steiner
tree solution. This algorithm achieves a (ρFL + ρST )-approximation guarantee,
where ρFL and ρST are the approximation ratios of the algorithms for the facility
location and for the Steiner tree problem, respectively. For the problem version
with multiple cable types, they provide an O(k) approximation extending the
algorithm of Guha et al. [9].

The remainder of this paper is organized as follows. In the Section 2, we study
the single cable version of the problem. Extending the framework proposed in [5],
we present a factor 6.72 approximation algorithm for this problem. In Section 3,
we describe our constant factor approximation algorithm for buy-at-bulk ConFL
extending the algorithm of Guha et al. [9] to incorporate also the selection of
facilities to open as well as the Steiner tree connecting them.
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2 Approximating Single-Cable-ConFL

First, we consider a simpler version of the problem, where only multiples of a
single cable type can be installed. Let u > 0 be the capacity of the only cable
type available. We may assume w.l.o.g. that the cost of this cable is one.

Combining the algorithmic framework proposed in [5] with techniques from
[8,15], we obtain an approximation algorithm for this problem. Let c(v, u) denote
the distance between u and v, and let c(v, U) = minu∈U c(v, u). Given a constant
parameter α ∈ (0, 1], which will be fixed later, our algorithm works as follows:

Algorithm 1
1. Guess a facility r from the optimum solution.

Mark each client with probability α
Mu . Let D′ be the set of marked clients.

2. Compute a ρST -approximate Steiner tree T1 on terminals D′ ∪ {r}.
3. Define a FL instance with clients D, facilities F , costs c′ij := 1

uc(i, j), ∀j ∈ D
and ∀i ∈ F , and opening costs f ′i := fi +M · c(i,D′ ∪ {r}), ∀i ∈ F .
Compute a (λF , λC)-bifactor-approximate solution U = (F ′, σ) to this in-
stance, where σ(j) ∈ F ′ indicates the facility serving j ∈ D in U .

4. Augment T1 with shortest paths from each i ∈ F ′ to T1.
Let T ′ be the augmented tree.
Output F ′ and T ′ as open facilities and core Steiner tree, respectively.

5. Compute a ρST -approximate Steiner tree T2 on terminals D ∪ {r}.
6. // Using the results in [8,15], we now install capacities to route the clients’

demands to open facilities.
For each j ∈ D with dj > u/2, install ddj/ue cables from j to its closest
open facility.
Considering only clients with dj ≤ u/2, partition T2 into disjoint subtrees
such that the total demand of each subtree not containing r is in [u/2, u]
and the total demand of the subtree containing r is at most u.
Install one cable on each edge contained in any subtree.
For each subtree not containing r, install one cable from the client closest
to an open facility to this facility.

One easily verifies that Algorithm 1 computes a feasible solution. Clearly,
T ′ is a Steiner tree connecting the open facilities F ′. The existence of (and a
polynomial time algorithm to find) a partition of the tree T2 into subtrees of
total demand between u/2 and u each, except for the subtree containing r, has
been shown in [8], given that each individual demand is at most u. From that, it
follows immediately that all clients j with dj ≤ u/2 can be routed within their
respective subtree towards the client closest to an open facility and then further
on to this facility without exceeding the capacity u on these edges.

It remains to show that the computed solution is an approximate solution.
Let O′U and C ′U be the (modified) opening and connection costs of the solu-
tion U of the facility location problem solved in Step 3. Furthermore, let I∗,
S∗, and F ∗ be the set of open facilities, the Steiner tree connecting them, and
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the forest connecting the clients to the open facilities in the optimal solution,
respectively. Also let σ∗(j) ∈ I∗ be the facility serving j ∈ D in the optimal
solution. The opening costs, cable installation costs, and core Steiner tree costs
of the algorithm’s solution and of the optimal solution are denoted by O,C, T
and O∗, C∗, T ∗, respectively. Let c(E′) :=

∑
e∈E′ ce for any E′ ⊆ E,

Lemma 1. The cable installation cost induced in Step 6 is at most c(T2)+2·C ′U .

Proof. Using the result in [8], the total flow on any edge of the Steiner tree T2
induced by grouping the demands into disjoint subtrees is at most u. Thus, one
copy of the cable on all edges in T2 is sufficient to accommodate the flow on the
edges of T2, which contributes c(T2) to the total cable installation cost.

Let C1, C2, ..., CT be the sets of clients in each subtree and for each Ct let
jt ∈ Ct be the client which is closest to an open facility in F ′. The modified
connection costs in U are

C ′U =
∑
t

∑
j∈Ct

dj
u
c(j, σ(j)) +

∑
j∈D:dj>

u
2

dj
u
c(j, σ(j))

≥
∑
t

∑
j∈Ct

dj
u
c(j, σ(j)) +

∑
j∈D:dj>

u
2

1

2
c(j, σ(j)) .

Since the algorithm sends the total demand of Ct via jt, we have

C ′U ≥
∑
t

∑
j∈Ct

dj

u
c(jt, σ(jt)) +

∑
j∈D:dj>

u
2

1

2
c(j, σ(j)) ≥ 1

2
CAC ,

where CAC is the cost of the cables installed by the algorithm between the
subtrees and the closest open facilities and between the large demand clients
and the open facilities. Altogether the total cost of buying cables to route the
traffic is at most c(T2) + 2 · C ′U . ut

Lemma 2. The opening and core connection cost of the computed solution sat-
isfy O + T ≤ O′U +M · c(T1).

Proof. Algorithm 1 opens the facilities chosen in the FL solution and connects
these facilities by the tree T ′. Since the modified opening costs f ′ in Step 3
include both the original cost for opening F ′ and the cost for augmenting T1 to
T ′, the sum of the opening cost and core connection cost of the final solution
are at most O′U +M · c(T1). ut

Lemma 3. The expected cost of T1 is at most ρST

M (T ∗ + αC∗).

Proof. We obtain a feasible Steiner tree on D′ ∪ {r} by joining the optimal
solution’s Steiner tree S∗ and the paths connecting each client in D′ with its
corresponding open facility in I∗ in the optimal solution. The expected cost of
the resulting subgraph is at most∑

e∈S∗
c(e) +

α

M · u
∑
j∈D

l(j, I∗) ,
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where l(j, I∗) denotes the length of the path connecting j to its open facility in
I∗ using edges of F ∗.

Since each cable installed in the optimal solution has a capacity of u and,
thus, can be used by at most u clients’ paths, we have

∑
j∈D l(j, I

∗) ≤ u · C∗.
Thus the expected cost of the ρST -approximate Steiner tree on D′ ∪ {r} is at
most ρST

M (T ∗ + αC∗). ut
Lemma 4. The cost of T2 is at most ρST (T ∗ + C∗).

Proof. Clearly S∗ ∪ F ∗ defines a feasible Steiner tree on D ∪ {r}. ut
Lemma 5. E[O′U + C ′U ] ≤ λF (O∗ + αC∗) + λC(C∗ + 0.807

α T ∗).

Proof. We provide a feasible solution for the facility location problem, whose
expected opening cost is O∗+αC∗ and whose expected connection cost is C∗+
0.807
α T ∗. Choose facilities σ∗(D′) ∪ {r}. The expected opening cost is at most∑

i∈I∗
fi +M · α

M · u
∑
j∈D

l(j, σ∗(j)) ≤ O∗ + αC∗ .

In order to bound the expected connection cost, we apply the core connection
game described in [4] for ConFL with clients D, core S∗, mapping σ = σ∗,

w(e) = c(e)
u , and probability α

M ·u , which yields

E[
∑
j∈D

c′(j, σ∗(D′) ∪ {r})] ≤ 1

u

∑
j∈D

l(j, I∗) +
0.807
α
M ·u

· T ∗

M · u
≤ C∗ +

0.807

α
T ∗ ut

Now we have all ingredients together to prove that our algorithm achieves a
constant approximation guarantee.

Theorem 6. For a proper choice of α, Algorithm 1 is an 6.72-approximation
algorithm for Single-Cable-ConFL.

Proof. By Lemmas 1, 2, 3, and 4, we have

E[O + T + C] ≤ O′U + 2 · C ′U + ρST (2T ∗ + (α+ 1)C∗) .

Applying Lemma 5, we can bound the first two terms, which yields

E[O + T + C] ≤ ρST (2T ∗+(α+1)C∗) + 2[λF (O∗+αC∗) + λC(C∗+
0.807

α
T ∗)]

= (2λF )O∗ + 2(λC
0.807

α
+ ρST )T ∗ +

(
ρST (α+ 1) + 2(λFα+ λC)

)
C∗ . (1)

Applying Byrka’s (λF , 1+2 ·e−λF )-bifactor approximation algorithm [17] for the
facility location subproblem and the (currently best known) ln(4)-approximation
algorithm for the Steiner tree problem [16] and setting α = 0.5043 and λF =
2.1488, inequality (1) implies E[O + T + C] ≤ 6.72(O∗ + T ∗ + C∗). ut

For unit demands, one can derive a stronger bound of c(T2)+CU for the cable
installation costs using the techniques proposed in [8] for the single sink network
design problem. Adapting Step 6 of the algorithm and adjusting the parameters
α and λF accordingly, one easily obtains a 4.57-approximation algorithm for the
Single-Cable-ConFL problem with unit demands.
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3 Approximating buy-at-bulk ConFL

In this section, we present a constant factor approximation algorithm for the
buy-at-bulk ConFL, which uses the ideas of Guha’s algorithm [9] for the single
sink buy-at-bulk network design problem to design the access trees.

First, we define another problem similar to the buy-at-bulk ConFL with
slightly different cost function, called modified-buy-at-bulk ConFL. In this prob-
lem, each access cable has a fixed cost of σi, a flow dependent incremental cost
of δi = σi

ui
, and unbounded capacity. That is, for using one copy of cable type i

on edge e and transporting D flow unit on e, a cost of (σi +Dδi)ce is incurred.
It is not hard to see that any ρ-approximation to the modified problem gives

a 2ρ-approximation to the corresponding original buy-at-bulk ConFL. Further-
more, we will show later that there exist near optimal solutions of the modified
problem that have a nice tree-like structure with each cable type being installed
in a corresponding layer. We will exploit this special structure in our algorithm
to compute approximate solutions for the modified problem and, thereby, also
approximate solutions for the original buy-at-bulk ConFL.

In the modified-buy-at-bulk ConFL, we assume that σ1 < ... < σK and
δ1 > ... > δK . In addition, we assume 2σK < M .

First, we prune the set of cable types such that all cables are considerably
different. As shown in [9], this can be done without increasing the cost of the
optimal solution too much.

Theorem 7. For a predefined constant α ∈ (0, 12 ), we can prune the set of cables
such that, for any i, we have σi+1 >

1
α · σi and δi+1 < α · δi hold and the cost of

the optimal solution increases by at most 1
α .

We observe that, as demand along an edge increases, there are break-points
at which it becomes cheaper to use the next larger cable type. For 1 ≤ i < K,
we define bi such that σi+1 + biδi+1 = 2α(σi+ biδi). Intuitively, bi is the demand
at which it becomes considerably cheaper to use a cable type i+ 1 rather than a
cable type i. It has been shown in [9] that the break-points and modified cable
cost functions satisfy the following properties.

Lemma 8.

(i) For all i, we have ui ≤ bi ≤ ui+1.
(ii) For any i and D ≥ bi, we have σi+1 +Dδi+1 ≤ 2 · α(σi +Dδi).

Let bK = M−σK

δK
be the edge flow at which the cost of using cable type K and

a core link are the same. Suppose we install cable type i whenever the edge
flow is in the range [bi−1, bi], 1 ≤ i ≤ K, where b0 = 0. It can be shown that,
if the edge flow is in the range [bi−1, ui], then considering only the fixed cost
σi (times the edge length) for using cable type i on the edge and ignoring the
flow dependent incremental cost will underestimate the true edge cost only by
a factor 2. Similarly, if the edge flow is in [ui, bi], then considering only the flow
dependent cost δi times the flow and ignoring the fixed cost underestimates the
cost by only a factor 2. This means that any solution can be converted to a
layered solution, loosing at most a factor 2 in cost, where layer i consists of (i)
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a Steiner forest using cable type i and carrying a flow of at least bi−1 on each
edge, and (ii) a shortest path forest with each edge carrying a flow of at least
ui. In the following theorem, we define the structural properties of such layered
solutions more formally. As in [9], for sake of simplicity, we assume that there
are extra loop-edges such that property (iii) can be enforced for any solution.

Theorem 9. There exists a solution to the modified-buy-at-bulk ConFL with the
following properties.

(i) The incoming demand of each open facility is at least bK .
(ii) Cable i+ 1 is used on edge e only if at least bi demand is routed across e.

(iii) All demand which enters a node, except an open facility, using cable i,
leaves that node using cables i and i+ 1.

(iv) The solution’s cost is at most 2( 1
α + 1) times the optimum cost.

Proof. Consider an optimum solution of the modified-buy-at-bulk ConFL. Let
T ∗ be the tree connecting the open facilities in the optimum solution. Consider
those open facilities whose incoming demand is less than bK . We can find an
unsplittable flow on the edges of T ∗ sending the aggregated demand from these
facilities to some other open facilities such that the resulting solution obeys
property (i) and the total flow on any edge of the Steiner tree is at most bK .
Therefore the cost of closing these facilities and sending the corresponding de-
mands to some other open facility using access links can be bounded by the core
Steiner tree cost of the optimal solution, so we close these facilities and reroute
demands. Now identify the set of remaining open facilities to a single sink, and
update the edge length metric appropriately. The resulting solution is now a
(possibly sub-optimal) single-sink network design solution. Results in [9] imply
that there is a near-optimal solution to this single-sink instance which obeys the
properties (ii) and (iii), with a factor ( 2

α + 1) loss in the total access cable cost.
Hence, we can transform our modified-buy-at-bulk ConFL solution to a solution
which satisfies properties (ii)–(iv), too. ut

Our algorithm constructs a layered solution as described in Theorem 9 in a
bottom-up fashion, aggregating the clients demands repeatedly and alternating
via Steiner trees and direct assignments (or, equivalently, shortest path trees)
to values exceeding ui and bi. In phase i, we first aggregate the (already pre-
aggregated) demands of value at least bi−1 to values of at least ui using cable
type i on the edges of an (approximate) Steiner tree connecting these demands.
Then we further aggregate the aggregates of value at least ui to values of at
least (a constant fraction of) bi solving a corresponding load balanced facility
location problem[18], where all clients may serve as facilities to aggregate demand
at (in all phases but the last one, where only real facilities are eligible). The
load balanced facility location problem is a generalization of the classical facility
location problem where each open facility is required to serve a certain minimum
amount of demand. To solve this subproblem, we employ the bicriteria µρFL-
approximation algorithm devised by Guha et al. [18], which relaxes the lower
bound by a factor β = µ−1

µ+1 . Here ρFL is the best known approximation for the
facility location problem.
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Our algorithm starts with the set of all clients and builds the first layer using
cables of type 1. It first constructs a Steiner tree to find an aggregation to points
with at least u1 aggregated demand volume. As mentioned after Lemma 8, at
this demand threshold the problem changes its characteristics from being close
to a Steiner tree problem to being a close to a shortest path problem. Next,
our algorithm solves a lower bounded facility location problem to aggregate the
demands further to values of at least βb1. At this demand value it is justified
the use of the next bigger cable type and the residual problem has is close to
a Steiner tree problem again. This process is repeated for all but the last cable
types. For the last cable type, demand aggregation is allowed only on potential
facility nodes. Finally the chosen facilities are connected by a core Steiner tree.
Let Di be the set of demand points we have at the i-th stage. Initially D1 = D.
Our algorithm can be stated as follows:

Algorithm 2
1. Guess a facility r from the optimum solution.
2. For cable type i = 1, 2, ...,K − 1 Do

- Steiner Trees Construct a ρST -approximate Steiner tree Ti on terminals
Di ∪{r} for edge costs σi per unit length. Root this tree at r. Transport the
demands from Di upwards along the tree. Walking along this tree, identify
edges whose demand is larger than ui and cut the tree at these edges.

- Consolidate For every tree in the forest created in the preceding step, transfer
the total demand in the root of tree, which is at least ui, back to one of its
sources with probability proportional to the demand at that source.

- Shortest Path Solve load balanced facility location instance on D1 with the
facility lower bound bi and cost zero on all the nodes. Edge costs are δi per
unit length and we get a forest of shortest path trees. We then route our
current demands along these trees to their roots.

- Consolidate For every root in the forest created in the preceding step, trans-
fer the total demand in the root of tree, which is at least β · bi, back to one
of its sources with probability proportional to the demand at that source.
We set Di+1 to this new demand locations.

3. For cable type K Do
- Construct a ρST -approximate Steiner tree TK on terminals DK∪{r} for edge

costs σK per unit length. Root this tree at r. Transport the demands from
DK upwards along the tree. Walking along this tree, identify edges whose
demand is larger than uK and cut the tree at these edges. For every tree in
the created forest, transfer the total demand in the root of tree back to one
of its sources with probability proportional to the demand at that source.

- Solve load balanced facility location instance on D1 with the facility lower
bound bK and on F . edge costs are δK per unit length and we get a forest
of shortest path trees. We then route our current demands along these trees
to their roots. Let F ′ be the set of open facilities.

4. Compute a ρST -approximate Steiner tree TK+1 on terminals F ′ ∪ {r}.
Install the core link on the edges of TK+1.
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Our analysis will basically follow the analysis in [9], with some modifications
to account for the facility opening and connection cost. We define Ci and C∗i
to be the total cost paid for cables of type i in the returned solution and the
near-optimum solution, respectively. Let Di

j be the demand of node j at stage
i of the algorithm. Let Ti, Pi and Ni be the Steiner tree, Shortest path and
consolidation step costs respectively, at iteration i. Also, let T Ii and TFi denote
the incremental, fixed cost components respectively of the Steiner tree step at
iteration i. P Ii and PFi are similarly defined for the Shortest path step. Recall
that we use some α ∈ (0, 12 ) as a constant parameter which will be fixed later.

The following Lemma carries over from the single sink buy-at-bulk problem
studied in [9] to our problem in a straightforward way.

Lemma 10. (i) At the end of each consolidation step, every node has E[Di
j ] =

dj.
(ii) E[Ni] ≤ Ti + Pi for each i.

(iii) PFi ≤ P Ii and T Ii ≤ TFi for each i.

The following lemma bounds the fixed costs of the cables installed in the
Steiner tree phase i of our algorithm.

Lemma 11. E[TFi ] ≤ ρST
(∑i−1

j=1
1
β (2α)i−jC∗j +

∑K
j=i α

j−iC∗j + 1
2α

K−iC∗K+1

)
for each i.

Proof. We construct a feasible Steiner tree for stage i as follows. Consider the
near-optimum solution, and consider only those nodes which are candidate ter-
minals in stage i of our algorithm. We remove all the cables if the total demand
flowing across it is zero. Otherwise we replace the cable with a cable of type i.
Note that, being in stage i, the expected demand on each cable j < i is at least
βbi. Hence, by Lemma 8, the expected cost of all replacement cables for cables
of type j < i is bounded by 1

β (2α)i−jC∗j .
Similarly, the expected cost of the replacement cables for the cables j > i are

bounded by αj−iC∗j , using the fixed costs scale. Finally, the cost on a core link

used to connect candidate terminals to r is reduced at least by 1
2α

K−iC∗K+1. Al-
together, the expected fixed cost of this Steiner tree, which is a possible solution
to the Steiner tree problem in stage i, is bounded by

i−1∑
j=1

1

β
(2α)i−jC∗j +

K∑
j=i

αj−iC∗j +
1

2
αK−iC∗K+1 .

As we use a ρST -approximation algorithm to solve this Steiner tree problem in
our algorithm, the claim follows. ut

In a similar way, we can also bound the incremental costs of the cables
installed in the shortest path phase i of our algorithm.

Lemma 12. E[P Ii ] ≤ µ · ρFL
∑i
j=1 α

i−j · C∗j for each i < K.

Proof. Consider the forest defined by the edges with cable types 1 to i in the
near-optimum solution and replace all cables of type less than i by cables of type
i. The cost of replacing all cables of type j < i is bounded by αi−j · C∗j , using
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the incremental costs scale. The resulting tree provides a feasible solution for the
shortest path stage i. As our algorithm applies a bicriteria µ ·ρFL-approximation
algorithm to solve the lower bounded facility location problem in this stage, the
claim follows. ut

The opening costs and the incremental shortest path costs in the final stage
of our algorithm can be bounded as follows.

Lemma 13. E[P IK + f(F ′)] ≤ µ · ρFL(
∑K
i=1 α

K−i · C∗i +O∗)

Proof. Now, consider the forest given by all access edges of the near-optimum
solution and replace all cables (of type less than K) by cables of type K. For each
i < K, the incremental cost of the new solution is a fraction αK−i of the incre-
mental cost of the optimal solution’s cable i portion. The set of facilities opened
in the solution, combined with the cables, constitutes a feasible solution for the
load balanced facility location problem solved in the final stage, and its cost is
no more than

∑K
i=1 α

K−iC∗i + O∗. Using the bicriteria µ · ρFL-approximation
algorithm, the claim follows. ut

Finally, the cost of the core Steiner tree have to be bounded.

Lemma 14. E[TK+1] ≤ ρST
(
C∗K+1 + 1

β

∑K
j=1(C∗j + Cj)

)
Proof. Let F ∗, T ∗core and T ∗access be the set of open facilities, the tree connecting
them, and the forest connecting clients to open facilities in the near-optimum
solution, respectively. Let Taccess be the forest connecting clients to open facil-
ities in the solution returned by the algorithm. We construct a feasible Steiner
tree on F ′ ∪ {r}, whose expected cost is C∗K+1 + 1

β

∑K
j=1(C∗j + Cj). In the al-

gorithm’s solution, each facility l ∈ F ′ serves at least a total demand of βbK .
This demand is also served by the set of optimal facilities in the near-optimum
solution. Therefore, at least βbK demand can be routed between each facility
l ∈ F ′ and the facilities of F ∗ along edges of T ∗access ∪ Taccess (using the access
links). Hence, we obtain a feasible Steiner tree on F ′∪F ∗, using core links, whose

cost is at most C∗K+1 + 1
β

∑K
j=1(C∗j + Cj). ut

Theorem 15. The algorithm is a constant approximation for buy-at-bulk ConFL.

Proof. By Lemmas 10–12, the total expected cost of access links is bounded by

4

K∑
i=1

[
µρFL

i∑
j=1

αi−jC∗j + ρST

( K∑
j=i

αj−iC∗j +

i−1∑
j=1

1

β
(2α)i−jC∗j +

1

2
αK−iC∗K+1

)]
≤ 4
(µ.ρFL

1− α
+

ρST
1− α

+
ρST

β(1− 2α)

) K∑
i=1

C∗i +
2 · ρST
1− α

C∗K+1

Additionally, using Lemmas 13 and 14, the total cost of installing core links and
opening facilities is bounded by

µρFLO
∗ +

ρST
β

K+1∑
i=1

C∗i +
ρST
β

K∑
i=1

Ci .
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Altogether, we obtain a bound of

µρFLO
∗+
[ρST

β
+4(1+

ρST

β
)(
µρFL + ρST

1− α +
ρST

β(1− 2α)
)
] K∑

i=1

C∗
i +
( 2ρST

1− α+
ρST

β

)
C∗

K+1

for the worst case ratio between the algorithm’s solution and a near optimal
solution, restricted according to Theorem 9, of the modified-buy-at-bulk ConFL.
With Theorems 7 and 9, this yields a worst case approximation guarantee of
2
α ( 1

α + 1) times the above ratio against an unrestricted optimal solution of the
modified-buy-at-bulk ConFL.

Finally, we lose another factor of 2 in the approximation guarantee when
evaluating the approximate solution for the modified-buy-at-bulk ConFL with
respect to the original buy-at-bulk ConFL problem. For appropriately chosen
fixed parameters α, β, and µ, we nevertheless obtain a constant factor approxi-
mation algorithm for buy-at-bulk ConFL. ut
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